
- •Введение
- •1. Модели. Элементы моделей
- •2. Построение кривых
- •3. Построение поверхностей
- •4. Типы моделей
- •5. Полигональные сетки
- •6. Описание геометрических форм
- •6.1. Описание поверхностей. Параметрическое описание поверхностей
- •Эллипсоид
- •Xacoscos,
- •Общие случаи нормали к поверхности
- •Описание поверхностей неявными функциями
- •6.2. Поточечное описание поверхностей.
- •6.3. Синтез изображений методом обратной трассировки лучей
- •Система координат, применяемая в методе обратной трассировки лучей
- •6.4. Способы представления моделей геометрических объектов
- •6.5. Кривые и поверхности nurbs
- •7. Структура твердотельной модели
- •8. Синтез твердого тела по процедурному описанию
- •8.1 Векторная полигональная модель
- •8.2. Воксельная модель
- •8.3. Равномерная сетка
- •8.4. Неравномерная сетка. Изолинии
- •9. Преобразование моделей описания поверхности
- •10. Понятие кубических сплайнов
- •11. Интерполяция b-сплайнами
- •12. Выпуклые оболочки
- •Основные понятия и идеи
- •12.1. Метод обхода грэхема
- •12.2. Обход методом джарвиса
- •13. Геометрмческое моделирование криволинейных объек тов с использованием барицентрических координат
- •13.1. Линейная интерполяция и барицентрические координаты
- •13.1.1. Барицентрические координаты на прямой
- •13.1.2. Барицентрические координаты на плоскости
- •13.1.3. Барицентрические координаты в пространстве
- •13.2. Метод определения точек, инцидентных треугольной порции поверхности, по заданным локальным координатам
- •13.2.1. Алгоритм задания квадратичной параболы
- •13.2.2. Анализ алгоритма кастельжо для произвольной кривой
- •13.2.3. Обобщённый алгоритм для треугольной порции поверхности
- •13.3. Аппроксимация поверхностей обобщенными полиномами бернштейна
- •13.3.1. Свойства треугольной порции поверхности безье
- •13.3.2. Свойства обобщенных полиномов бернштейна
- •14. Особенности аппроксимации обводов параметрическими полиномами в форме бернштейна
- •14.1. Методы полиномиальной аппроксимации одномерных обводов
- •14.1.1. Общая постановка задачи аппроксимации дискретного набора данных
- •14.1.2. Аппроксимация обводов параметрическими полиномами
- •14.1.3. Аппроксимация обводов параметрическими полиномами бернштейна
- •14.2. Геометрические свойства производных полиномов бернштейна
- •14.2.1. Вычисление первой производной
- •14.2.2. Вычисление производных высшего порядка
- •14.3. Методы полиномиальной аппроксимации двумерных обводов
- •Метод тензорного произведения
- •Каркасный метод
- •14.3.3. Метод булевой суммы (поверхности Кунса)
- •15. Стандарты в графических системах сапр и современные растровые графические файлы
- •15.1. Графические системы класса 2d
- •15.2. Графические системы класса 3d
- •15.3. Стандарты обмена данными
- •16. Системы подготовки и выпуска конструкторско-технологической документации. Организация конструкторской подготовки производства
- •17. Графические диалоговые системы
- •17.1. Краткий обзор зарубежных cad-систем
- •Технологические модули в pt/Products. Интеграция процессов проектирования и изготовления
- •Работа со стандартными библиотеками посредством pt/LibraryAccess и pt/Library
- •17.2. Отечественные разработки
- •Компас 5
- •T-flex cad
- •Заключение
- •394026 Воронеж, Московский просп., 14
3. Построение поверхностей
Основные способы построения поверхностей:
интерполяцией по точкам;
перемещением образующей кривой по заданной траектории (кинематический метод);
деформацией исходной поверхности;
построением поверхности эквидистантной к исходной;
кинематический принцип;
операции добавления/удаления в структуре;
теоретико-множественные (булевские) операции.
Широко используются бикубические параметрические куски, с помощью которых сложная криволинейная поверхность аппроксимируется набором отдельных кусков с обеспечением непрерывности значения функции и первой (второй) производной при переходе от одного куска к другому. В общем случае представление бикубического параметрического куска имеет вид (приведена формула для x-координаты, для других координат формула аналогична):
|
Аналогично случаю с параметрическими кубическими кривыми наиболее применимыми являются:
форма Безье;
форма В-сплайнов;
форма Эрмита.