
- •1. Назначение и функции, выполняемые ао.
- •2. Классификация ао по видам оборудования.
- •10) Авиационные тренажеры:
- •3. Особенности работы авиационного оборудования.
- •4. Требования, предъявляемые к авиационному оборудованию.
- •5. Дать определение сэс вс и её составляющих.
- •6. Как классифицируется сэс вс.
- •7. Структура сэс вс переменного тока.
- •8. Структура сэс вс постоянного тока.
- •9. Структура первичной сэс вс.
- •10. Структура вторичной сэс вс.
- •11. Что входит в состав срэ вс?
- •12. Перечислить наименования электрических проводов используемых в системах распределения электрической энергии. В чём их отличия.
- •13. Перечислить виды разъёмных устройств используемых в системах распределения электрической энергии.
- •14. Перечислить виды элементов регулирования, защиты и управления сэс ла.
- •15. Назначение элементов регулирования, защиты и управления сэс ла.
- •16. Назначение металлизации и экранирования в срэ ла.
- •17. Назначение и принцип действия статических разрядников.
- •18. Общие сведения, назначение и классификация химических источников тока.
- •19. Основные положения теории электролитической диссоциации. Электролиты.
- •20. Электрические характеристики химических источников тока.
- •23. Общие характеристики для всех типов электрохимических систем.
- •21. Принцип действия кислотных аккумуляторов.
- •22.Пояснить процесс двойной сульфатации.
- •24. Основные технические и электрические характеристики свинцово-кислотных аб.
- •25.Конструкция авиационных кислотных аккумуляторных батарей.
- •26. Пояснить сущность вредной сульфатации электродов.
- •27. Принцип действия серебряно-цинковых аккумуляторов.
- •28.Пояснить процесс дендритообразования.
- •29. Общие характеристики для всех типов электрохимических систем.
- •30. Основные технические и электрические характеристики серебряно-цинковых аб.
- •31. Конструкция авиационных серебряно-цинковых аккумуляторных батарей.
- •32. Назначение, конструкция и принцип действия интегрирующего счётчика ампер-часов (иса).
- •33. Принцип действия авиационных никель-кадмиевых аккумуляторных батарей.
- •34. Конструкция и характеристики авиационных никель-кадмиевых аккумуляторных батарей.
- •35. Меры безопасности при работе с бортовыми аккумуляторными батареями.
- •36. Общие правила эксплуатации авиационных аккумуляторных батарей.
- •20Нкбн-25 (Ni-Cd)
- •37. Особенности эксплуатации авиационных аккумуляторных батарей.
- •38. Установка аккумуляторных батарей на летательный аппарат, основные правила содержания аккумуляторов.
- •39. Устойчивость работы системы регулирования напряжения и способы её повышения.
- •40. Способы уменьшения температурной погрешности регулятора напряжения типа урн.
- •41. Назначение параллельной работы генераторов.
- •42. Защита генераторов постоянного тока от обратного тока.
- •43. Защита генераторов и бортовой сети от перенапряжения.
- •44. Импульсные автоматы защиты питательной сети.
- •45. Требования, предъявляемые к точности стабилизации напряжения в системах электроснабжения летательных аппаратов.
- •46. Методы регулирования напряжения. Принципы построения регуляторов напряжения авиационных генераторов.
- •47. Параллельная работа источников электроэнергии постоянного и переменного токов в авиационных системах электроснабжения.
- •48. Назначение, принцип действия, устройство, работа и особенности эксплуатации урн типа рн - 180, рн - 600, рн - 120у.
- •49. Назначение, принцип действия, устройство и особенности эксплуатации дифференциально-минимального реле дмр-600т.
- •50. Назначение, классификация и основные электрические характеристики авиационных генераторов.
- •51. Принцип действия и конструктивные особенности авиационных генераторов.
- •52. Основные типы генераторов постоянного тока и их конструктивные особенности.
- •53. Электрические и эксплуатационные характеристики генераторов постоянного тока.
- •54. Основные типы генераторов переменного тока и их конструктивные особенности.
- •55. Электрические и эксплуатационные характеристики генераторов переменного тока.
- •57. Охлаждение авиационных генераторов.
- •58. Правила технической эксплуатации генераторов постоянного тока типа стг, гс.
- •60. Правила технической эксплуатации генераторов переменного тока типа го.
- •63. Назовите аварийные режимы при эксплуатации электроэнергетических систем вс.
- •64. Назначение питательной сети вс.
- •65. Что понимается под основной сетью?
- •66. Что понимается под аварийной сетью?
- •67. Поясните работу схемы питательной сети самолёта-истребителя.
- •68. Требования, предъявляемые к аппаратуре защиты энергосистем летательных аппаратов.
- •69. На какие группы делится коммутационная аппаратура в зависимости от способа управления?
- •70. Пояснить принцип действия реле и контакторов.
- •71. Пояснить принцип работы коробки переключающих реле кпр-9.
- •72. Типы плавких предохранителей применяемых на вс.
- •73. Принцип действия плавких предохранителей.
- •74. Типы автоматов защиты и их принцип действия.
- •75. Назначение и типы дмр.
- •76. Защита генераторов и их фидеров от коротких замыканий.
- •77. Типы биметаллических автоматов защиты.
- •78. Типы плавких предохранителей.
- •79. Работа коробки коч-62б 2 серии.
- •80. Работа автомата азп-8м 4 серии.
- •81. Работа автомата азп-8м 5 серии.
- •82. Принцип действия защиты при несимметрии нагрузки.
- •83. Принцип действия датчика направления тока днт-1.
- •84. Типы автоматов защиты и их принцип действия.
- •85. Характерные отказы аппаратуры защиты и управления и методы их предупреждения.
- •86. Требования предъявляемые к системам распределения электроэнергии вс.
- •87. Состав срэ и классификация по способу распределения электроэнергии.
- •88. Классификация по электрическим параметрам систем распределения электроэнергии и по конфигурации систем распределения электроэнергии.
- •89. Классификация по системе распределения электроэнергии.
- •90. Назначение и состав системы распределения эл. Энергии самолёта Ан-26.
- •91. Назначение и состав системы распределения эл. Энергии вертолёта Ми-8.
- •1.1. Система генерирования
- •92. Типы бортовых эл. Проводов. 93. Классификация электрических проводов.
- •94. Меры безопасности при работе с системами электроснабжения летательных аппаратов.
- •95. Характерные отказы электрических сетей ла и методы их предупреждения.
37. Особенности эксплуатации авиационных аккумуляторных батарей.
Бортовые АБ и съемные контейнеры закрепляются за самолетами. На АБ и съемных контейнерах должны быть надписи с указанием бортового номера самолета и принадлежности к подразделению. При неисправности АБ, закрепленных за самолетом, их отправке на КГЦ разрешается устанавливать запасные АБ, которых предусматривается по 2 комплекта на подразделение, По решению инженера части по АО допускается временная установка на самолет АБ, закрепленных за другими самолетами.
Запрещается оставлять АБ на борту самолета в следующих случаях:
1) при их неисправности; отклонениях параметров от заданных значений
2) при консервации самолета;
3) при длительном содержании самолета в условиях отрицательных температур (ниже -10°С).
АБ, снятые с самолета, должны храниться а наземных обогреваемых контейнерах или помещениях.
Совместное хранение и зарядка кислотных и щелочных АГ категорически запрещается.
38. Установка аккумуляторных батарей на летательный аппарат, основные правила содержания аккумуляторов.
При установке АБ в ЛА, важно:
1) АБ устанавливать в специальный контейнер, свинцово-кислотный – каждую АБ в специальный контейнер;
2) Проверять работу АБ;
3) Устанавливать только АБ, приписанные к борту (по решению инженера части по АО допускается временная установка на самолет АБ, закрепленных за другими самолетами).
Правила хранения:
1) КГЦ проводятся после хранения АБ в разряженном состоянии более месяца;
2) Серебряно-цинковые АБ должны храниться в разряженном состоянии.
3) Никель-кадмиевые батареи, бывшие в эксплуатации, но временно не эксплуатируемые, целесообразно ставить на хранение после проведения доразряда током 10А до напряжения 20В;
4) Кислотно-цинковая АБ должна храниться в заряженном состоянии с электролитом.
39. Устойчивость работы системы регулирования напряжения и способы её повышения.
Генератор и регулятор напряжения в совокупности представляют систему регулирования, которая в общем случае описывается дифференциальным уравнением довольно высокого порядка. С возрастанием скорости вращения генератора и уменьшения его нагрузки увеличиваются коэффициенты усиления генератора, угольного столбика и электромагнита регулятора. Известно, что с увеличением значений коэффициентов усиления отдельных звеньев качество переходных процессов системы регулирования ухудшается. При некоторых условиях система регулирования напряжения генератора, собранная по схеме, рассмотренной выше, может оказаться неустойчивой.
Для получения устойчивого процесса регулирования применяются специальные стабилизирующие средства:
1) жесткая отрицательная обратная связь в виде стабилизирующего сопротивления;
2) гибкая отрицательная обратная связь в виде стабилизирующего трансформатора.
Стабилизирующее сопротивление rС.Т. включается между обмоткой электромагнита wэ регулятора и обмоткой возбуждения wВ генератора. Рассмотрим, как воздействует это сопротивление на процесс стабилизации напряжения по схеме изображённой на рисунке 1.
Поскольку величины сопротивления rτ и обмотка wэ электромагнита в процессе работы постоянны, то потенциал точки Б остаётся также примерно постоянным. Потенциал точки А изменяется в широких пределах ввиду изменения сопротивления Rу.с. угольного столбика.
Допустим, что происходит резкое увеличение напряжения генератора. Тогда якорь под действием возросшей силы электромагнита начинает перемещаться к сердечнику, сопротивление угольного столбика возрастает, потенциал точки А уменьшается. Следовательно, увеличивается ток i через стабилизирующее сопротивление. Этот ток создаёт дополнительное падение напряжения на сопротивлении rτ вследствие чего напряжение на обмотке и сила электромагнита уменьшаются. Поэтому якорь приобретает меньшую кинетическую энергию и через равновесное положение (когда сила электромагнита равна силе пружины) проходит с меньшей скоростью и отклоняется на меньшую величину. При этом хотя напряжение генератора и станет меньше заданного Uo, но отклонение его Δur будет меньше, чем отклонение напряжение Δuo без стабилизирующего сопротивления.
Рис. 1. Схематическое изображение подключения элементов регулировании напряжения
Поскольку величина напряжения генератора стала меньше заданной и сила сжатой пружины стала больше силы электромагнита, якорь начинает двигаться в обратную сторону, но с меньшей скоростью, чем в отсутствие стабилизирующего сопротивления. В результате колебания напряжения быстро затухают.
Рис. 2. Зависимость напряжения от времени при исправлении отклонения по напряжению
Кривые зависимости напряжения генератора от времени (Рис. 2.) характеризуют переходные процессы при включённом и выключенном стабилизирующем сопротивлении после ступенчатого уменьшения нагрузки в момент времени t1.
Наличие жёсткой отрицательно обратной связи приводит к появлению погрешности регулирования Δuс.т. внешняя характеристика генератора с регулятором получается более крутой, чем без стабилизирующего сопротивления.
При малой скорости вращения генератора ввиду уменьшения коэффициентов усиления система регулирования устойчива и без стабилизирующего сопротивления. Чтобы при этом оно не вносило ошибки регулирования, в некоторых регуляторах напряжения (РУГ – 82) его отключают с помощью вентиля В. Когда скорость вращения генератора мала, то потенциал точки А выше потенциала точки Б и вентиль В не пропускает ток через стабилизирующее сопротивление.
Величину стабилизирующего сопротивления выбирают достаточно большой, чтобы уменьшить вносимую им погрешность регулирования. Однако при этом переходный процесс получения колебательным. Поэтому кроме стабилизирующего сопротивления в схему регулирования включается специальный стабилизирующий трансформатор.