Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Materialy_Arhitektura.doc
Скачиваний:
22
Добавлен:
18.09.2019
Размер:
1.84 Mб
Скачать

11. Види архітектур комп’ютерів.

12. Приклади архітектур комп’ютерів. На сегоднишний день существуют:

Классификация Флинна: единственность или множественность потоков данных и команд.

Дополнения Ванга и Бриггса: конкретизация классов SISD, SIMD, MIMD.

Классификация Фенга: две простые численные характеристики параллелизма (пословный и поразрядный параллелизм).

Классификация Шора: шесть "типичных архитектур" вычислительных систем.

Классификация Хендлера: количественное описание параллелизма на трех различных уровнях обработки данных (выполнение программы, выполнение команд, обработка битов).

Классификация Хокни: конкретизация класса MIMD.

Классификация Шнайдера: конкретизация класса SIMD (основная идея - выделение этапов выборки и непосредственно исполнения в потоках команд и данных).

Классификация Джонсона: четыре класса MIMD-компьютеров (компьютеры с общей или распределенной памятью, программируемые с помощью передачи сообщений или разделяемых переменных).

Классификация Базу: последовательность решений, принятых на этапе проектирования архитектуры.

Классификация Кришнамарфи: четыре качественные характеристики параллелизма (степень гранулярности параллелизма, способ реализации, топология и природа связи процесоров, способ управления процессорами).

Классификация Скилликорна: описание архитектуры компьютера как абстрактной структуры, состоящей из компонент 4 типов (процессор команд, процессор данных, иерархия памяти, коммутатор).

Классификация Дазгупты: построение схем архитектур из семи базовых понятий.

Классификация Дункана.

Архитектура фон Неймана

Архитектура фон Неймана (англ. von Neumann architecture) — широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», однако, соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных.

Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы, в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но невозможно применить для обработки текста и компьютерных игр, для просмотра графических изображений или видео. Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации и перестройки блоков и устройств и т. п.

Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций, и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.

Принципы фон Неймана

В 1946 году трое учёных — Артур Бёркс (англ. Arthur Burks), Герман Голдстайн (англ. Herman Goldstine) и Джон фон Нейман — опубликовали статью «Предварительное рассмотрение логического конструирования электронного вычислительного устройства»[2]. В статье обосновывалось использование двоичной системы для представления данных в ЭВМ (преимущественно для технической реализации, простота выполнения арифметических и логических операций — до этого машины хранили данные в десятичном виде[3]), выдвигалась идея использования общей памяти для программы и данных. Имя фон Неймана было достаточно широко известно в науке того времени, что отодвинуло на второй план его соавторов, и данные идеи получили название «принципы фон Неймана».

Принцип двоичного кодирования.

Для представления данных и команд используется двоичная система счисления.

Принцип однородности памяти.

Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления — чаще всего двоичной). Над командами можно выполнять такие же действия, как и над данными.

Принцип адресуемости памяти.

Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка; память внутренняя.

Принцип последовательного программного управления.

Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой, в последовательности, определяемой программой.

Принцип жесткости архитектуры.

Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Компьютеры, построенные на этих принципах, относят к типу фоннеймановских.

Компьютеры, построенные на принципах фон Неймана

В середине 1940-х проект компьютера, хранящего свои программы в общей памяти был разработан в Школе электрических разработок Мура (англ. The Moore School of Electrical Engineering) в Университете штата Пенсильвания (англ. The University of Pennsylvania). Подход, описанный в этом документе, стал известен как архитектура фон Неймана, по имени единственного из названных авторов проекта Джона фон Неймана, хотя на самом деле авторство проекта было коллективным. Архитектура фон Неймана решала проблемы, свойственные компьютеру «ЭНИАК», который создавался в то время, за счёт хранения программы компьютера в его собственной памяти. Информация о проекте стала доступна другим исследователям вскоре после того, как в 1946 году было объявлено о создании «Эниака». По плану предполагалось осуществить проект силами Муровской школы в машине EDVAC, однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти. Другие научно-исследовательские институты, получившие копии проекта, сумели решить эти проблемы гораздо раньше группы разработчиков из Муровской школы и реализовали их в собственных компьютерных системах.

Гарвардская архитектура

Гарвардская архитектура — архитектура ЭВМ, отличительным признаком которой является раздельное хранение и обработка команд и данных. Архитектура была разработана Говардом Эйкеном в конце 1930-х годов в Гарвардском университете

В 30-х годах правительство США поручило Гарвардскому и Принстонскому университетам разработать архитектуру ЭВМ для военно-морской артиллерии. Победила разработка Принстонского университета (более известная как архитектура фон Неймана, названная так по имени разработчика, первым предоставившего отчет об архитектуре), так как она была проще в реализации

  • Классическая гарвардская архитектура

Типичные операции (сложение и умножение) требуют от любого вычислительного устройства нескольких действий: выборку двух операндов, выбор инструкции и её выполнение, и, наконец, сохранение результата. Идея, реализованная Эйкеном, заключалась в физическом разделении линий передачи команд и данных. В первом компьютере Эйкена «Марк I» для хранения инструкций использовалась перфорированная лента, а для работы с данными — электромеханические регистры. Это позволяло одновременно пересылать и обрабатывать команды и данные, благодаря чему значительно повышалось общее быстродействие.

  • Модифицированная гарвардская архитектура

Соответствующая схема реализации доступа к памяти имеет один очевидный недостаток — высокую стоимость. При разделении каналов передачи команд и данных на кристалле процессора последний должен иметь почти в два раза больше выводов (так как шины адреса и данных составляют основную часть выводов микропроцессора). Способом решения этой проблемы стала идея использовать общую шину данных и шину адреса для всех внешних данных, а внутри процессора использовать шину данных, шину команд и две шины адреса. Такую концепцию стали называть модифицированной Гарвардской архитектурой.

Такой подход применяется в современных сигнальных процессорах. Еще дальше по пути уменьшения стоимости пошли при создании однокристалльных ЭВМ — микроконтроллеров. В них одна шина команд и данных применяется и внутри кристалла.

Разделение шин в модифицированной Гарвардской структуре осуществляется при помощи раздельных управляющих сигналов: чтения, записи или выбора области памяти.

  • Расширенная гарвардская архитектура

Часто требуется выбрать три составляющие : два операнда и инструкцию (в алгоритмах цифровой обработки сигналов это наиболее распространенная задача в БПФ и КИХ, БИХ фильтрах). Для этого существует кэш-память. В ней может храниться инструкция — следовательно, обе шины остаются свободными и появляется возможность передать два операнда одновременно. Использование кэш-памяти вместе с разделёнными шинами получило название «Super Harvard Architecture» («SHARC») — расширенная Гарвардская архитектура.

  • Гибридные модификации с архитектурой фон Неймана

Существуют гибридные модификации архитектур, сочетающие достоинства как Гарвардской, так и фон Неймановской архитектур. Современные CISC-процессоры обладают раздельной кэш-памятью 1-го уровня для инструкций и данных, что позволяет им за один такт получать одновременно как команду, так и данные для её выполнения, то есть процессорное ядро, формально, является гарвардским, но с программной точки зрения выглядит как фон Неймановское, что упрощает написание программ. Обычно в данных процессорах одна шина используется и для передачи команд, и для передачи данных, что упрощает конструкцию системы. Современные варианты таких процессоров могут иногда содержать встроенные контроллеры сразу нескольких разнотипных шин для работы с различными типами памяти — например, DDR RAM и Flash. Тем не менее, и в этом случае шины, как правило, используются и для передачи команд, и для передачи данных без разделения, что делает данные процессоры еще более близкими к фон Неймановской архитектуре при сохранении плюсов Гарвардской архитектуры..

Cамой ранней и наиболее известной является классификация архитектур вычислительных систем, предложенная в 1966 году М.Флинном. Классификация базируется на понятии потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. На основе числа потоков команд и потоков данных Флинн выделяет четыре класса архитектур: SISD,MISD,SIMD,MIMD.

SISD (англ. Single Instruction, Single Data) или ОКОД (Одиночный поток Команд, Одиночный поток Данных) — архитектура компьютера, в которой один процессор выполняет один поток команд, оперируя одним потоком данных. Относится к фон-Неймановской архитектуре.

SISD компьютеры это обычные, «традиционные» последовательные компьютеры, в которых в каждый момент времени выполняется лишь одна операция над одним элементом данных (числовым или каким-либо другим значением). Большинство персональных ЭВМ до последнего времени, например, попадает именно в эту категорию. Иногда сюда относят и некоторые типы векторных компьютеров, это зависит от того, что понимать под потоком данных.

MISD-Архитектура (англ. Multiple Instruction stream, Single Data stream, Множественный поток Команд, Одиночный поток Данных, МКОД) — тип архитектуры параллельных вычислений, где несколько функциональных модулей (два или более) выполняют различные операции над одними данными.

Отказоустойчивые компьютеры, выполняющие одни и те же команды избыточно с целью обнаружения ошибок, как следует из определения, принадлежат к этому типу. К этому типу иногда относят конвейерную архитектуру, но не все с этим согласны, так как данные будут различаться после обработки на каждой стадии в конвейере. Некоторые относят систолический массив процессоров к архитектуре MISD.

Было создано немного ЭВМ с MISD-архитектурой, поскольку MIMD и SIMD чаще всего являются более подходящими для общих методик параллельных данных. Они обеспечивают лучшее масштабирование и использование вычислительных ресурсов, чем архитектура MISD.

SIMD (англ. single instruction, multiple data — одиночный поток команд, множественный поток данных, ОКМД) — принцип компьютерных вычислений, позволяющий обеспечить параллелизм на уровне данных.

SIMD-компьютеры состоят из одного командного процессора (управляющего модуля), называемого контроллером, и нескольких модулей обработки данных, называемых процессорными элементами. Управляющий модуль принимает, анализирует и выполняет команды. Если в команде встречаются данные, контроллер рассылает на все процессорные элементы команду, и эта команда выполняется на нескольких или на всех процессорных элементах. Каждый процессорный элемент имеет свою собственную память для хранения данных. Одним из преимуществ данной архитектуры считается то, что в этом случае более эффективно реализована логика вычислений. До половины логических инструкций обычного процессора связано с управлением выполнением машинных команд, а остальная их часть относится к работе с внутренней памятью процессора и выполнению арифметических операций. В SIMD компьютере управление выполняется контроллером, а «арифметика» отдана процессорным элементам.

SIMD-процессоры называются также векторными.

MIMD (англ. Multiple Instruction stream, Multiple Data stream — Множественный поток Команд, Множественный поток Данных, сокращённо МКМД) — концепция архитектуры компьютера, используемая для достижения параллелизма вычислений. Машины имеют несколько процессоров, которые функционируют асинхронно и независимо. В любой момент, различные процессоры могут выполнять различные команды над различными частями данных. MIMD-архитектуры могут быть использованы в целом ряде областей, таких как системы автоматизированного проектирования / автоматизированное производство, моделирование, а также комуникатор связей (communication switches). MIMD машины могут быть либо с общей памятью, либо с распределяемой памятью. Эта классификация основана на том как MIMD-процессоры получают доступ к памяти. Этот класс предполагает, что в вычислительной системе есть несколько устройств обработки команд, объединенных в единый комплекс и работающих каждое со своим потоком команд и данных.

Обработка разделена на несколько потоков, каждый с собственным аппаратным состоянием процессора, в рамках единственного определённого программным обеспечением процесса или в пределах множественных процессов. Поскольку система имеет несколько потоков, ожидающих выполнения (системные или пользовательские потоки), эта архитектура эффективно использует аппаратные ресурсы.

В MIMD могут возникнуть проблемы взаимной блокировки и состязания за обладание ресурсами, так как потоки, пытаясь получить доступ к ресурсам, могут столкнуться непредсказуемым способом. MIMD требует специального кодирования в операционной системе компьютера, но не требует изменений в прикладних программах, кроме случаев когда программы сами используют множественные потоки (MIMD прозрачен для однопоточных программ под управлением большинства операционных систем, если программы сами не отказываются от управления со стороны ОС). И системное и пользовательское программное обеспечение, возможно, должны использовать программные конструкции, такие как семафоры, чтобы препятствовать тому, чтобы один поток вмешался в другой, в случае если если они содержат ссылку на одни и те же данные. Такое действие увеличивает сложность кода, снижает производительность и значительно увеличивают количество необходимого тестирования, хотя обычно не настолько чтобы свести на нет преимущества многопроцессорной обработки.

Подобные конфликты могут возникнуть на аппаратном уровне между процессорами, и должен обычно решаться аппаратными средствами, или с комбинацией программного обеспечения и оборудования.

Персональный компьютер можно представить в следующем виде:

1) Процессор. Является основным компонентом любого ПК. Выполняет все вычисления и обработку данных ,одной из наиболее существенных характеристик центрального процессора является размер шины данных и адресной шины. Шина- это группы соединений для передачи сигналов. Сигналы в компьютере передаются по шинам в виде последовательности 0 и 1.

В настоящее время наиболее распространены процессоры фирмы Intel, хотя ЦП других фирм (AMD, Cyrix) составляют им достойную конкуренцию. Производительность любого процессора при выполнении заданной программы зависит от трех параметров: такта (или частоты) синхронизации, среднего количества команд, выполняемых за один такт, и общего количества выполняемых в программе команд. Ни один из указанных параметров, невозможно изменить, независимо от других, поскольку соответствующие базовые технологии взаимосвязаны. При этом, частота синхронизации определяется достигнутым уровнем технологии интегральных схем и функциональной организацией процессора. Среднее количество тактов на команду зависит от функциональной организации и архитектуры системы команд, а количество выполняемых в программе команд определяется архитектурой системы команд и технологией компиляторов. Из этого видно, что создание нового высокопроизводительного процессора требует решения сложных вопросов во всех трех направлениях разработки. При этом эффективная с точки зрения стоимости конструкция не может полагаться только на увеличение тактовой частоты. Экономические соображения заставляют разработчиков принимать решения, основой которых является массовая технология.

2) КЭШ 2-го уровня. Система памяти персонального компьютера состоит обычно из под системного ОЗУ (опер. запоминающее устройство) и факультативного внешнего КЭШа процессора называемого так же КЭШ 2-го уровня или L2.

Системная плата:

1) Связывает между собой:

- один или несколько процессоров и оперативную память;

- одну или множество стандартных шин ввода/вывода, размещенных на корпусею.

2) Обеспечивает:

- поддержкой технологии дисков и дисковых массивов RAID;

- поддержкой режима однопроцессорной, многопроцессорной, симметричной многопроцессорной обработки задания по нескольким центральным процессорам или режима асимметричной многопроцессорной обработки, которая допускает выделение процессоров для выполнения конкретных задач.

Мост/контроллер памяти предназначен для того, чтобы отделить локальную шину CPU от шины PCI.

DRAM - динамическая память. . В настоящее время трудно найти конфигурацию с объёмом памяти менее 128 Мб. Для нормальной работы большинства программных продуктов желательно иметь хотя бы 256 Мб памяти.

Встроенная электроника канала IDE- это устройство для подключения магнитных дисков.

Интерфейс шины расширения предназначен для соединения шины ISA (EISA) с шиной PCI

Шина ISA (EISA) – устройство для подключения периферийных устройств к компьютеру.

Дисковод для гибких дисков. Существует два стандарта : 5.25” и 3.5”. На сегодняшний день большинство компьютеров поставляется с дисководом 3.5”.

Жёсткий диск Начав своё шествие с объема в 5 МБ, достиг небывалых высот. На сегодняшний день не удивят диски объёмом 40 Гб, 60 Гб, 100 Гб и выше Гб . Следует придать значение не только емкости диска, но и его временным характеристикам.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]