
- •Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования
- •Основы гидравлики
- •Содержание
- •1. Рабочая программа 7
- •2. Гидростатика 10
- •3. Основы кинематики и динамики жидкости 34
- •4. Гидравлические сопротивления 51
- •5. Гидравлический расчет трубопроводов 65
- •Введение
- •1.Рабочая программа
- •Введение
- •2.Гидростатика
- •2.1.Основные физические свойства жидкости и газа.
- •2.2.Вязкость жидкости.
- •2.3.Силы, действующие в жидкости
- •2.4.Абсолютное Гидростатическое давление и его свойства
- •2.5.Дифференциальные уравнения равновесия жидкости
- •2.6.Поверхность равного давления и ее свойства
- •2.7.Основное уравнение гидростатики
- •2.8.Приборы для измерения абсолютного, манометрического давлений и давления вакуума
- •2.9.Сила давления жидкости на наклонную плоскую стенку
- •2.10.Точка приложения силы давления жидкости на плоские стенки.
- •2.11.Сила давления жидкости на криволинейные поверхности
- •2.12.Примеры и задачи
- •3.Основы кинематики и динамики жидкости
- •3.1.Основные понятия и определения гидродинамики
- •3.2.Уравнение неразрывности потока
- •3.3.Уравнение Бернулли для струйки идеальной жидкости
- •3.4.Уравнение Бернулли для струйки и потока реальной жидкости
- •3.5.Интерпритации уравнения Бернулли
- •3.6.Примеры и задачи
- •4.Гидравлические сопротивления
- •4.1.Виды гидравлических сопротивлений
- •4.2.Ламинарное и турбулентное движение жидкости
- •4.3.Основное уравнение равномерного движения
- •4.4.Ламинарный режим движения
- •4.5.Турбулентный режим движения
- •4.6.Экспериментальные исследования коэффициента гидравлического сопротивления
- •4.7.Примеры и задачи
- •5.Гидравлический расчет трубопроводов
- •5.1.Расчет Коротких трубопроводов
- •5.1.1.Уравнение простого трубопровода
- •5.1.2.Первый тип расчета
- •5.1.3.Второй тип расчета
- •5.1.4.Третий тип расчета
- •5.2.Расчет газопроводов при малых перепадах давлений
- •5.3.Примеры и задачи
- •5.4.Расчет газопроводов при Больших перепадах давлений
- •5.5.Гидравлический удар в трубах
- •5.6.Примеры и задачи
- •6.Гидравлический расчет истечения жидкостей
- •6.1.Истечение жидкости из малого отверстия в тонкой стенке
- •6.2.Истечение жидкости через внешний илиндрический насадок.
- •8.2.Гидравлические элементы живого сечения потока в канале.
- •8.3.Основные расчетные формулы для открытых русел
- •8.4.Основные задачи при расчете трапецеидальных каналов на равномерное движение воды.
- •8.5.Расчет безнапорных труб
- •8.6.Примеры и задачи
- •9.Литература
4.2.Ламинарное и турбулентное движение жидкости
Наблюдения показывают, что в природе существуют два различных вида движения жидкости: во-первых, слоистое упорядоченное, или ламинарное, движение, при котором отдельные слои жидкости скользят относительно друг друга, не смешиваясь между собой, и, во-вторых, неупорядоченное, или турбулентное, движение, когда частицы жидкости движутся по сложным, все время изменяющимся траекториям и в жидкости происходит интенсивное перемешивание. Уже давно известно, что вязкие жидкости (масла) движутся большей частью упорядочение, а маловязкие жидкости (вода, воздух) - почти всегда неупорядоченно. Ясность в вопросе о том, как именно будет происходить движение жидкости в тех или иных условиях, была внесена в 1883 году в результате опытов английского физика Рейнольдса.
Р |
Р |
Основываясь на некоторых теоретических соображениях, а также на результатах опытов, Рейнольдс установил общие условия, при которых возможны существование ламинарного и турбулентного режимов движения жидкости и переход от одного режима к другому. Оказалось, что состояние (режим) потока жидкости в трубе зависит от безразмерного числа, которое учитывает основные факторы, определяющие это движение: среднюю скорость v, диаметр трубы d, плотность жидкости и ее абсолютную вязкость .. Это число (позже оно стало называться числом Рейнольдса) имеет вид:
|
(4.0) |
Диаметр d в числе Рейнольдса может быть заменен любым линейным диаметром, связанным с условиями течения или обтекания (диаметр трубы, диаметр падающего в жидкости шара, длина обтекаемой жидкостью пластинки и др.).
Число Рейнольдса, при котором происходит переход от ламинарного движения к турбулентному, называют критическим и обозначают Reкр. При Re > Reкр - режим движения является турбулентным, при Re < Reкр - ламинарным. Критическое число Рейнольдса зависит от условий входа в трубу, шероховатости ее стенок, отсутствия или наличия первоначальных возмущений в жидкости, конвективных токов и др.
Вопрос о неустойчивости ламинарного движения и о его переходе в турбулентное, а также о величине критического числа Рейнольдса подвергался тщательному теоретическому и экспериментальному изучению, но до сих пор не получил еще достаточно полного решения. Наиболее часто в расчетах принимают для критического числа Рейнольдса при движении жидкости в трубах значение
|
(4.0) |
отвечающее переходу движения жидкости из турбулентного в ламинарное: при переходе движения из ламинарного в турбулентное критическое число Рейнольдса имеет большую величину (для хорошо закругленного плавного входа оно может быть доведено до 20000).
Проведенные исследования показывают также, что критическое число Рейнольдса увеличивается в сужающихся трубах и уменьшается в расширяющихся. Это можно объяснить тем, что при ускорении движения частиц жидкости в сужающихся трубах их тенденция к поперечному перемешиванию уменьшается, а при замедленном течении в расширяющихся трубах усиливается.
По критическому числу Рейнольдса легко можно найти также критическую скорость, т. е. скорость, ниже которой всегда будет происходить ламинарное движение жидкости:
|
(4.0) |
Предположив, что режим движения зависит только от четырех величин: v, d, и которые имеют размерность:
Режим |
Скорость |
Диаметр |
Плотность |
Вязкость |
- |
м/с |
м |
кг/м3 |
Пас = кг/(мс) |
Так, как режим движения не имеет размерности, то в правой части должна быть безразмерная величина. Из оставшихся величин, последовательно, исключая размерности массы, времени и расстояния можно получить безразмерный параметр, который и будет числом Рейнольдса.