
- •Лекция 1. Общие сведения по теории вероятностей.
- •Условные и безусловные вероятности.
- •1.5. Формула полной вероятности и формула Байеса
- •Понятие случайного события.
- •1) Вероятность достоверного события равна 1;
- •2) Вероятность невозможного события равна 0;
- •Вероятность случайного события заключена
- •1.2. Алгебра событий.
- •1.3. Зависимые и независимые события.
- •1.4. Основные формулы теории вероятностей.
- •1.5. Формула полной вероятности и формула Байеса
- •1.6. Частная теорема о повторении опытов.
- •2.1. Случайные величины и их законы распределения.
- •2.2. Функция распределения.
- •2 .3. Вероятность попадания случайной величины
- •2.4. Плотность распределения
- •2.5. Числовые характеристики случайной величины
- •2.6 Понятие о моментах случайной величины.
- •2.7. Основные свойства математического ожидания
- •Свойства математического ожидания:
- •Свойства дисперсии случайной величины:
- •Лекция 3. Основные законы распределения
- •3.1. Гипергеометрическое распределение
- •3.5. Закон равной вероятности
- •3.7. Закон распределения модуля разности
- •3.8. Композиция законов распределения
- •3.1.Гипергеометрическое распределение.
- •3.5. Закон равной вероятности.
- •3.7. Закон распределения модуля разности.
- •Статистики
- •4.1. Основные задачи математической статистики
- •4.2. Основные понятия и определения. Выборочного метода
- •4.3. Выборочные характеристики. Состоятельные,
- •Свойства выборочных средних и дисперсий.
- •Доверительный интервал. Доверительная вероятность.
- •Задача определения закона распределения случайной величины.
- •2. Задача проверки правдоподобия гипотез.
- •3.Задача нахождения неизвестных параметров распределения.
- •4.2. Основные понятия и определения. Выборочного метода.
- •Генеральная совокупность и выборка из нее.
- •4.3. Выборочные характеристики. Состоятельные, несмещенные и эффективные оценки характеристики.
- •4.5. Доверительный интервал. Доверительная вероятность.
- •5.1. Определение характеристик эмпирического
- •5.2. Сопоставление и проверка сходимости
- •Координаты характерных точек кривой
- •5.3. Сопоставление эмпирического распределения
- •5.4. Статистическая проверка гипотез.
- •5.5. Проверка гипотезы о законе распределения случайной
- •Критерий
- •Критерий 2
- •5.6. Проверка гипотезы равенства двух выборочных средних
- •5.7. Проверка гипотезы равенства двух выборочных
- •5.8. Проверка гипотезы равенства ряда дисперсий .
- •Критерий Бартлета.
- •Критерий Кохрана.
- •5.9. Проверка гипотезы равенства ряда средних.
- •5.10. Метод исключения грубых ошибок измерения
- •5.11. Выбор числа наблюдений
- •6.1.Закон больших чисел и центральная
- •6.2. Неравенство Чебышева.
- •Неравенство Чебышева.
- •6.3. Закон больших чисел (теорема Чебышева).
- •6.4 Теорема Бернулли.
- •7.2. Коэффициент корреляции и корреляционное отношение.
- •7.3. Корреляционный анализ
- •7.4 Выбор уравнения регрессии
- •7.5. Понятие о множественной корреляции
- •Лекция 8. Основы планирования
- •8.6.1. Метод крутого восхождения.
- •8.1. Основные определения.
- •«Черный ящик »
- •8.3. Полный факторный эксперимент.
- •8.3.1 Выбор интервалов варьирования факторов
- •8.3.2 Полный факторный эксперимент типа 2
- •Построение матрицы 2
- •8.3.3. Свойства полного факторного эксперимента типа 2 к
- •8.3.4. Полный факторный эксперимент
- •8.3.5 Анализ модели.
- •8.3.5.1. Проверка значимости коэффициентов модели.
- •Расчет дисперсии опытов и оценка их однородности
- •Расчет дисперсий параметра оптимизации и коэффициентов регрессии
- •Проверка значимости коэффициентов регрессии
- •8.3.5.2. Проверка адекватности модели
- •8.4. Дробный факторный эксперимент.
- •8.4.1.Минимизация числа опытов.
- •Дробная реплика
- •8.4.3. Выбор полуреплик. Генерирующие соотношения и определяющие контрасты
- •8.4.4.Выбор 1/4-реплик. Обобщающий
- •8.6. Оптимизация функции отклика.
- •8.6.1. Метод крутого восхождения.
- •6.6.2. Методика расчета крутого восхождения
- •6.7. Принятие решений после построения модели процесса
- •8.5 Рандомизация опытов.
- •8.6 Оптимизация функции отклика
- •8.6.1. Метод крутого восхождения. Движение по градиенту
- •8.6.2. Методика расчета крутого восхождения
- •8.7.Принятие решений после построения
- •9.1. Статистический анализ точности обработки.
- •9.3. Статистический анализ посредством малых выборок.
- •9.4. Статистический анализ с помощью точечных
- •9.4.1. Карта средних значений (карта « »)
- •9.4.2. Карта медиан (карта )
- •9.4.3. Карты « »
- •9.4.4. Метод средних арифметических значений и
- •9.4.4. Контрольные карты по неизмеримым
- •Карта «р»
- •Карта «с».
2.2. Функция распределения.
В предыдущем разделе мы ввели в рассмотрение ряд распределения как исчерпывающую характеристику случайной величины. Однако эта характеристика не является универсальной. Она существует только для д.с.в. Нетрудно убедиться, что для непрерывной случайной величины ( н.с.в.) такую характеристику построить нельзя, так как составить таблицу, в которой были бы перечислены все возможные значения непрерывной случайной величины, невозможно. Следовательно, для н.с.в. не существует ряда распределения в том смысле, в котором он существует для д.с.в. Однако различные области возможных значений случайной величины все же не являются одинаково вероятными, и для н.с.в. существует « распределение вероятностей », хотя и не в том смысле, как для д.с.в.
Для количественной оценки этого распределения вероятностей удобно пользоваться не вероятностью события Х = х, а вероятностью события Х < х, где х- некоторая текущая переменная. Вероятность этого события есть некоторая функция от Х. Эта функция называется функцией распределения случайной величины Х и обозначается F ( x ): F ( x ) = P ( X < x ).
Функцию распределения F ( x ) иногда называют интегральной функцией распределения или интегральным законом распределения.
Функция распределения F ( x ) - универсальная характеристика случайной величины. Она существует как для н.с.в., так и для д.с.в. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения, т.е. является одной из форм закона распределения.
Сформулируем общие свойства функции распределения.
1.
Функция распределения F
( x
) есть неубывающая функция своего
аргумента, т. е. при х2>
x1
F
( x2
)
F
( x1
).
2.
На минус бесконечности функция
распределения равна нулю: F
( -
)
= 0.
3. На плюс бесконечности функция распределения равна единице: F (+ )=1.
Функция распределения любой д.с.в. всегда есть разрывная ступенчатая функция, скачки которой происходят в точках соответствующих возможным значениям с.в. и равны вероятностям этих значений.
F(x)
F(x)
1
1
0
x1 x 2 x3 X X
F(x)
1
X
Сумма всех скачков функции F ( х ) равна единице. По мере увеличения числа возможных значений случайной величины и уменьшения интервалов между ними число скачков становится больше, а сами скачки – меньше; ступенчатая кривая становиться более плавной; случайная величина постепенно приближается к непрерывной величине, а ее функция распределения- к непрерывной функции.