
- •Лекция 1. Общие сведения по теории вероятностей.
- •Условные и безусловные вероятности.
- •1.5. Формула полной вероятности и формула Байеса
- •Понятие случайного события.
- •1) Вероятность достоверного события равна 1;
- •2) Вероятность невозможного события равна 0;
- •Вероятность случайного события заключена
- •1.2. Алгебра событий.
- •1.3. Зависимые и независимые события.
- •1.4. Основные формулы теории вероятностей.
- •1.5. Формула полной вероятности и формула Байеса
- •1.6. Частная теорема о повторении опытов.
- •2.1. Случайные величины и их законы распределения.
- •2.2. Функция распределения.
- •2 .3. Вероятность попадания случайной величины
- •2.4. Плотность распределения
- •2.5. Числовые характеристики случайной величины
- •2.6 Понятие о моментах случайной величины.
- •2.7. Основные свойства математического ожидания
- •Свойства математического ожидания:
- •Свойства дисперсии случайной величины:
- •Лекция 3. Основные законы распределения
- •3.1. Гипергеометрическое распределение
- •3.5. Закон равной вероятности
- •3.7. Закон распределения модуля разности
- •3.8. Композиция законов распределения
- •3.1.Гипергеометрическое распределение.
- •3.5. Закон равной вероятности.
- •3.7. Закон распределения модуля разности.
- •Статистики
- •4.1. Основные задачи математической статистики
- •4.2. Основные понятия и определения. Выборочного метода
- •4.3. Выборочные характеристики. Состоятельные,
- •Свойства выборочных средних и дисперсий.
- •Доверительный интервал. Доверительная вероятность.
- •Задача определения закона распределения случайной величины.
- •2. Задача проверки правдоподобия гипотез.
- •3.Задача нахождения неизвестных параметров распределения.
- •4.2. Основные понятия и определения. Выборочного метода.
- •Генеральная совокупность и выборка из нее.
- •4.3. Выборочные характеристики. Состоятельные, несмещенные и эффективные оценки характеристики.
- •4.5. Доверительный интервал. Доверительная вероятность.
- •5.1. Определение характеристик эмпирического
- •5.2. Сопоставление и проверка сходимости
- •Координаты характерных точек кривой
- •5.3. Сопоставление эмпирического распределения
- •5.4. Статистическая проверка гипотез.
- •5.5. Проверка гипотезы о законе распределения случайной
- •Критерий
- •Критерий 2
- •5.6. Проверка гипотезы равенства двух выборочных средних
- •5.7. Проверка гипотезы равенства двух выборочных
- •5.8. Проверка гипотезы равенства ряда дисперсий .
- •Критерий Бартлета.
- •Критерий Кохрана.
- •5.9. Проверка гипотезы равенства ряда средних.
- •5.10. Метод исключения грубых ошибок измерения
- •5.11. Выбор числа наблюдений
- •6.1.Закон больших чисел и центральная
- •6.2. Неравенство Чебышева.
- •Неравенство Чебышева.
- •6.3. Закон больших чисел (теорема Чебышева).
- •6.4 Теорема Бернулли.
- •7.2. Коэффициент корреляции и корреляционное отношение.
- •7.3. Корреляционный анализ
- •7.4 Выбор уравнения регрессии
- •7.5. Понятие о множественной корреляции
- •Лекция 8. Основы планирования
- •8.6.1. Метод крутого восхождения.
- •8.1. Основные определения.
- •«Черный ящик »
- •8.3. Полный факторный эксперимент.
- •8.3.1 Выбор интервалов варьирования факторов
- •8.3.2 Полный факторный эксперимент типа 2
- •Построение матрицы 2
- •8.3.3. Свойства полного факторного эксперимента типа 2 к
- •8.3.4. Полный факторный эксперимент
- •8.3.5 Анализ модели.
- •8.3.5.1. Проверка значимости коэффициентов модели.
- •Расчет дисперсии опытов и оценка их однородности
- •Расчет дисперсий параметра оптимизации и коэффициентов регрессии
- •Проверка значимости коэффициентов регрессии
- •8.3.5.2. Проверка адекватности модели
- •8.4. Дробный факторный эксперимент.
- •8.4.1.Минимизация числа опытов.
- •Дробная реплика
- •8.4.3. Выбор полуреплик. Генерирующие соотношения и определяющие контрасты
- •8.4.4.Выбор 1/4-реплик. Обобщающий
- •8.6. Оптимизация функции отклика.
- •8.6.1. Метод крутого восхождения.
- •6.6.2. Методика расчета крутого восхождения
- •6.7. Принятие решений после построения модели процесса
- •8.5 Рандомизация опытов.
- •8.6 Оптимизация функции отклика
- •8.6.1. Метод крутого восхождения. Движение по градиенту
- •8.6.2. Методика расчета крутого восхождения
- •8.7.Принятие решений после построения
- •9.1. Статистический анализ точности обработки.
- •9.3. Статистический анализ посредством малых выборок.
- •9.4. Статистический анализ с помощью точечных
- •9.4.1. Карта средних значений (карта « »)
- •9.4.2. Карта медиан (карта )
- •9.4.3. Карты « »
- •9.4.4. Метод средних арифметических значений и
- •9.4.4. Контрольные карты по неизмеримым
- •Карта «р»
- •Карта «с».
9.3. Статистический анализ посредством малых выборок.
Метод малых выборок имеет ряд преимуществ перед методом больших выборок. Основными преимуществами его являются, во-первых, уменьшение объема вычислительных работ, во-вторых, возможность следить за динамикой изменения точности процесса во времени, чего нельзя сделать с помощью метода больших выборок. Метод больших выборок может дать представление лишь о точности и устойчивости процесса в период взятия выборки, которые могут сохраниться и в дальнейшем, если после взятия выборки условия протекания процесса не изменяются. В действительности такой неизменности производственных условий заранее предвидеть нельзя. Например, при работе на прутковом автомате в течение смены производится несколько раз замена материала (смена прутка), смена инструмента в связи с износом, поднастройка станка и т.д., которые могут вносить значительные коррективы в полученные ранее параметры распределения. Метод малых выборок, если последние берут в течение всей смены регулярно через определенные промежутки времени, позволяет получить полную картину состояния процесса в течение исследуемого периода, выяснить степень его устойчивости, а также выявить причины недостаточной устойчивости процесса во времени, если она есть.
Статистический
анализ малыми выборками производится
следующим образом. Выборки объемом n=
5-10 шт. берутся через определенные
фиксированные промежутки времени
(например, через 15-30 мин). Период времени
для отбора проб устанавливается опытным
путем и зависит от производительности
станка, объема выборки и степени
устойчивости технологического процесса.
Для каждой выборки нужно вычислить
и S
.
Далее необходимо для каждых двух смежных
выборок проверить гипотезу однородности
дисперсий выборок при помощи F
- критерия Фишера.
Если гипотеза подтверждается, то это свидетельствует о стабильности рассеивания или о том, что сравниваемые выборки взяты из одной и той же генеральной совокупности. При подтверждении гипотезы однородности дисперсий двух выборок следует проверить гипотезу однородности двух выборочных средних по t -критерию Стьюдента .
Подтверждение гипотезы равенства двух смежных выборочных средних означает, что центр настройки оборудования не изменится в момент взятия данной выборки и остался таким, каким был при взятии предыдущей выборки, т.е. процесс находится в стабильном состоянии. Когда гипотеза равенства двух средних выборок не подтверждается, это свидетельствует о смещении центра настройки станка во время взятия данной выборки. Так как выборки берутся через определенные промежутки времени, то при обнаружении смещения центра настройки или изменения зоны рассеивания можно определить период времени, через который наступило нарушение стабильности процесса.
Обнаружив факт нарушения стабильности процесса, можно установить и область, в которой следует искать причину этого явления. Неоднородность выборочных дисперсий, свидетельствующая о нестабильности рассеивания, указывает на то, что причину этого следует искать в станке или в механических свойствах обрабатываемого материала. Неоднородность выборочных средних говорит о смещении центра настройки (причину искать в инструменте).
Таким образом, беря в течение смены через определенные интервалы времени малые выборки из текущей продукции станка, вычислены средние и дисперсии выборок путем сравнения и оценки их расхождения при помощи F и t- критериев, можно установить моменты разладок процесса и даже источники этих разладок.