
- •Оглавление
- •2. Краткие сведения из теории вероятностей
- •3. Предварительная обработка экспериментальных
- •7. Компьютерные методы статистической обработки
- •Предисловие
- •1. Эксперимент как предмет исследования
- •1.1. Понятие эксперимента
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •1.2. Классификация видов экспериментальных исследований
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •Контрольные вопросы
- •2. Краткие сведения из теории вероятностей и математической статистики
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2.2. Нормальный закон распределения
- •2. Краткие сведения из теории вероятностей …
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •Контрольные вопросы
- •3. Предварительная обработка экспериментальных данных
- •3.1. Вычисление параметров эмпирических распределений. Точечное оценивание
- •3.2. Оценивание с помощью доверительного интервала
- •3.2.1. Построение доверительного интервала для математического ожидания
- •3.2.2. Построение доверительного интервала для дисперсии
- •3.2.3. Определение необходимого количества опытов при построении интервальной оценки для математического ожидания
- •3.3. Статистические гипотезы
- •3.4. Отсев грубых погрешностей
- •3.4.1. Критерий н.В. Смирнова
- •3.4.2. Критерий Диксона
- •3.5. Сравнение двух рядов наблюдений
- •3.5.1. Сравнение двух дисперсий
- •3.5.2. Проверка однородности нескольких дисперсий
- •3.5.3. Проверка гипотез о числовых значениях математических ожиданий
- •3.6. Критерии согласия. Проверка гипотез о виде функции распределения
- •3.7. Преобразование распределений к нормальному
- •Контрольные вопросы
- •4. Анализ результатов пассивного эксперимента. Эмпирические зависимости
- •4.1. Характеристика видов связей между рядами наблюдений
- •4. Анализ результатов пассивного эксперимента...
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента…
- •4.2. Определение коэффициентов уравнения регрессии
- •4. Анализ результатов пассивного эксперимента...
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента
- •4. Анализ результатов пассивного эксперимента…
- •4.3. Определение тесноты связи между случайными величинами
- •4. Анализ результатов пассивного эксперимента...
- •4.4. Линейная регрессия от одного фактора
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента...
- •4. Анализ результатов пассивного эксперимента…
- •4.5. Регрессионный анализ
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента...
- •4.5.1. Проверка адекватности модели
- •4. Анализ результатов пассивного эксперимента...
- •4. Анализ результатов пассивного эксперимента…
- •4.5.2. Проверка значимости коэффициентов уравнения регрессии
- •4. Анализ результатов пассивного эксперимента…
- •4.6. Линейная множественная регрессия
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента…
- •4.7. Нелинейная регрессия
- •4. Анализ результатов пассивного эксперимента…
- •Контрольные вопросы
- •4. Анализ результатов пассивного эксперимента…
- •5. Оценка погрешностей результатов наблюдений
- •5.1. Оценка погрешностей определения величин функций
- •5. Оценка погрешностей результатов наблюдений
- •5.2. Обратная задача теории экспериментальных погрешностей
- •5. Оценка погрешностей результатов наблюдений
- •5. Оценка погрешностей результатов наблюдений
- •5.3.Определение наивыгоднейших условий эксперимента
- •5. Оценка погрешностей результатов наблюдений
- •Контрольные вопросы
- •6. Методы планирования экспериментов. Логические основы
- •6.1. Основные определения и понятия
- •6.2. Пример хорошего и плохого эксперимента
- •6.3. Планирование первого порядка
- •6.3.1. Выбор основных факторов и их уровней
- •6.3.2. Планирование эксперимента
- •6.3.3. Определение коэффициентов уравнения регрессии
- •6.3.4. Статистический анализ результатов эксперимента
- •6.3.5. Дробный факторный эксперимент
- •6.3.6. Разработка математической модели гидравлического режима методической печи
- •6.4. Планы второго порядка
- •6.4.1. Ортогональные планы второго порядка
- •6.4.2. Ротатабельные планы второго порядка
- •6.4.3. Исследование причин образования расслоений в горячекатаных листах
- •6.5. Планирование экспериментов при поиске оптимальных условий
- •6.5.1. Метод покоординатной оптимизации
- •6.5.2. Метод крутого восхождения
- •6.5.3. Симплексный метод планирования
- •Контрольные вопросы
- •7. Компьютерные методы статистической обработки результатов инженерного эксперимента
- •7.1. Общие замечания
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7.2. Статистические функции Microsoft Excel
- •7. Компьютерные методы статистической обработки ...
- •7. Компьютерные методы статистической обработки …
- •7.3. Краткое описание системы statistica
- •7. Компьютерные методы статистической обработки …
- •7.3.1. Общая структура системы
- •7. Компьютерные методы статистической обработки ...
- •7. Компьютерные методы статистической обработки …
- •7.3.2. Возможные способы взаимодействия с системой
- •7. Компьютерные методы статистической обработки … 7.3.3. Ввод данных
- •7. Компьютерные методы статистической обработки ...
- •7.3.4. Вывод численных и текстовых результатов анализа
- •7.3.5. Статистические процедуры системы statistica
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7.3.6. Структура диалога пользователя в системе statistica
- •7. Компьютерные методы статистической обработки ...
- •7.3.7. Примеры использования системы statistica
- •7. Компьютерные методы статистической обработки ...
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •V, Least Squares
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки … Контрольные вопросы
- •Методы планирования и обработки результатов инженерного эксперимента
6.5. Планирование экспериментов при поиске оптимальных условий
Во многих случаях инженерной практики перед исследователем возникает задача не только выявления характера связи между двумя или несколькими рядами наблюдений, но и нахождения таких численных значений факторов, при которых отклик (выходной параметр) достигает своего экстремального значения (максимума или минимума). Эксперимент, решающий эту задачу, называется экстремальным. В этом случае задача сводится к оптимизационной и формулируется следующим образом: требуется определить такие координаты экстремальной точки (x-i*, х2*, ..., хк*) поверхности отклика y=f(x1, х2, ..., хк), в которой она максимальна (минимальна): max y(x-i, х2, ..., х k)=y(xi*, х2*, ..., х^).
Графическая интерпретация задачи оптимизации объекта y(xi, х2) при двух факторах х-i, х2 представлена на рис. 6.4 а, б. Здесь точка А соответствует оптимальным значениям факторов xi* и х2*, обеспечивающим максимум функции отклика утах- Замкнутые линии на рис. 6.4, б характеризуют линии постоянного уровня и описываются уравнением y=f(xi, x2)=B=const.
Необходимость в экстремальных экспериментах довольно часто возникает в инженерной практике. Так, на модели шахтной печи с противоточно дви-
195
6. МЕТОДЫ ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТОВ. ЛОГИЧЕСКИЕ ОСНОВЫ
жущимся плотным продуваемым слоем, схема которой представлена на рис.6.5, требуется определить расположение фурмы по высоте печи Н, ее диаметр D и высов L, обеспечивающие максимальную степень использования теплового потенциала газового потока. В данном случае факторами являются Н, D, L, а в качестве функции отклика у(Н, D, L,) в первом приближении можно использовать температуру отходящих из печи газов.
Рис.6 Л. Поверхность отклика (а) и линии равного уровня (б): y=f(x1,x2)=B=const для n=2
Заметим, что вид функции отклика в этом случае исследователю заранее неизвестен, т.е. отсутствует математическая модель, адекватно описывающая данный процесс. Требуется с наименьшими затратами (при минимальном числе опытов) определить оптимальные значения Н*, L*, D*, при которых температура отходящих газов минимальна.
196
6. МЕТОДЫ ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТОВ. ЛОГИЧЕСКИЕ ОСНОВЫ
Известный из практики метод "проб" и "ошибок", в котором факторы изменяются на основании опыта, интуиции или наугад, при обычно имеющем место значительном числе факторов при исследовании процессов в металлургии зачастую оказывается малоэффективным вследствие весьма сложной зависимости функции отклика от факторов.
Требуют значительно меньшего числа
опытов и быстрее приводят к цели те поиско-
Рис. 6.5. Схема шахтной печи: вые методы оптимизации, где шаговое варьи- 1-1 -датчик температуры;
рование факторами производится целенаправ- 1-2 - регистрирующий прибор пенно по определенному плану. Поисковые методы оптимизации относятся к классу итерационных процедур, при этом весь процесс разбивается на шаги, на каждом шаге делается ряд опытов и определяется, каким образом нужно изменить факторы, влияющие на процесс, чтобы получить улучшение результата. При этом на каждом очередном шаге получаемая информация используется для выбора последующего шага.
Разработано множество методов пошаговой оптимизации, которые подробно рассматриваются в разделе вычислительной математики - “Численные методы оптимизации”. Мы же рассмотрим только некоторые из них, эффективность использования которых в промышленном и лабораторном эксперименте применительно к металлургическим процессам подтверждена практикой.