Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 методичка Шлыка Ю.К..doc
Скачиваний:
20
Добавлен:
07.09.2019
Размер:
5.72 Mб
Скачать

4.10. Особенности работы нелинейных элементов в цепях синусоидального тока

Рассмотренные выше свойства нелинейных элементов имеют место в цепях постоянного тока, однако в цепях переменного тока их работа связана со своей спецификой, которая определяется частотой колебаний источника. Все полупроводниковые электронные приборы в широком диапазоне частот можно считать безинерционными. Для такого класса элементов можно говорить о нелинейности их характеристик, связывающих мгновенные токи и напряжения. При подведении к такому элементу синусоидального напряжения ток в нем будет несинусоидальным и наоборот.

Рис.4.10.1. Входные и выходные характеристики

нелинейных элементов

На рис. 4.10.1 по заданной вольт-амперной характеристике нелинейного элемента и синусоидальному напряжению построена зависимость тока в функции времени i(t). Из построения следует, что функция тока имеет несинусоидальный характер. В ее спектре есть высшие гармоники. Правомочна и обратная постановка задачи: при синусоидальном токе напряжение на зажимах элемента будет несинусоидальным. Наряду с безинерционными элементами существует целый класс инерционных элементов, зависимость токов и напряжений которых зависит от температуры. Нелинейность таких элементов проявляется на уровне действующих значений токов и напряжений.

Явления, происходящие в электрических цепях, весьма разнообразны. Это - стабилизация, релейный эффект, умножение, деление частоты, выпрямление сигналов и т.д. Расчет таких цепей представляет сложную задачу, связанную с необходимостью решения нелинейных дифференциальных уравнений. Теория решения этих уравнений в каждом конкретном случае имеет свой вид и в подавляющем большинстве случаев является приближенной, поэтому на первое место выходят численные методы, задающие начальную оценку решения и соответственно приближенные результаты.

4.11. Нелинейные магнитные цепи при синусоидальных токах и напряжениях

Проведем анализ работы нелинейной магнитной цепи на примере катушки индуктивности с ферромагнитным сердечником, которая является основным элементом электрических машин, трансформаторов и др. электромагнитных устройств на переменном токе. Исследование режимов ее работы позволит оценить количественную и качественную стороны происходящих в ней явлений. В силу нелинейности характеристики B(H) индуктивность является переменной величиной, поэтому ЭДС самоиндукции катушки целесообразно рассматривать как зависимость от Ф или ψ:

;

.

Будем считать, что магнитный поток в сердечнике изменяется по закону

Ф = Фm·sinωt.

Тогда индуктируемая им ЭДС

,

где действующее значение ЭДС

(4.11)

ЭДС самоиндукции отстает от магнитного потока на угол 90, в свою очередь, напряжение и ЭДС находятся в противофазе, и, следовательно, напряжение опережает магнитный поток на 90.

4.12. Потери в стали

Любые изменения магнитного потока в стальном сердечнике неизменно сопровождаются выделением тепла, причем часть тепла затрачивается на преодоление потерь на гистерезис или перемагничивание и потерь, вызванных вихревыми токами (токи Фуко). Эту мощность называют потерями в стали. Учет этой мощности является неизменным условием расчета любого электротехнического устройства, поскольку он задает тепловой режим и эффективность его работы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]