Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 методичка Шлыка Ю.К..doc
Скачиваний:
20
Добавлен:
07.09.2019
Размер:
5.72 Mб
Скачать

3.1. Работа линии в установившемся режиме

Если такая линия питается от источника синусоидального тока или напряжения, то в установившемся режиме эти напряжения и токи также синусоидальны. Переходя от мгновенных значений токов и напряжений к их комплексным изображениям, перепишем данную систему в следующем виде:

(3.1.1)

Система содержит простые производные ввиду того, что комплексные изображения токов и напряжений не являются функциями времени, и количество переменных сократилось до одной. Это - координата длины линии, поэтому необходимость в частных производных отпала. Выполняя преобразования, можно представить систему в еще более компактном виде:

(3.1.2)

где - продольное сопротивление линии;

- поперечная проводимость линий, причем

Решая систему (3.1.2) относительно напряжения или тока, получим соответствующие уравнения для тока и напряжения:

(3.1.3)

, (3.1.4)

где - постоянная распространения линии, является комплексным числом:

; (3.1.5)

А1 и А2 – неизвестные комплексные постоянные интегрирования, которые могут быть определены из граничных условий. Аналогичного рода рассуждения позволят записать уравнение для тока:

. (3.1.6)

Введем понятие волнового сопротивления линии:

(3.1.7)

Тогда

Для дальнейшего анализа процессов, происходящих в длинных линиях, перейдем от комплексов напряжения и тока к их мгновенным значениям. Примем:

(3.1.8)

Аналогичные рассуждения позволят записать и функцию тока:

(3.1.9)

Полученные выражения показывают закон изменения тока и напряжения как функции времени и координаты длины линии. Каждое из выражений представлено двумя слагаемыми, которые представляют собой бегущие волны, движущиеся в направлении увеличения или уменьшения координаты x. Исследуем полученные соотношения на примере напряжения u(x,t) (рис.3.1.1) Пусть для некоторого момента времени t1 первое слагаемое напряжения обратится в ноль в начале линии, тогда закон распределения амплитуды вдоль длины будет иметь вид, представленный на рис. 3.1.1 в виде сплошной линии.

Рис.3.1.1. Падающая волна

Возьмем следующий момент времени t2 . Функция u(t) сместится и займет новое (пунктирное) положение. Движение волны происходит с некоторой фазовой скоростью VФ.

Рис.3.1.2. Отраженная волна

На рис. 3.1.2 аналогично представлена отраженная волна для двух моментов времени.

В реальности нет ни падающей, ни отраженной волны в линии, есть единый закон распределения токов и напряжений вдоль линии. Однако введение падающей и отраженных волн облегчает процесс расчета таких цепей. Все то же самое касается i(x,t), который также представлен суммой падающей и отраженной волны.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]