
- •§ 1. Проблема охраны окружающей среды
- •§ 2. Предельно допустимые концентрации вредных веществ в атмосферном воздухе
- •§ 3. Общие вопросы защиты воздушного бассейна металлургических предприятий
- •Часть I газоочистные аппараты
- •Глава 1
- •§ 1. Основы классификации газоочистных аппаратов
- •§ 2. Оценка эффективности работы пылеуловителей
- •Глава 2
- •§ 1. Движение частиц пыли в неподвижной среде
- •§ 2. Осаждение частиц пыли в камерах и газоходах
- •Глава 3
- •§ 1. Сепарация частиц пыли из криволинейного потока газа
- •§ 2. Жалюзийные пылеуловители
- •§ 3. Радиальные пылеуловители (пылевые мешки)
- •Глава 4
- •§ 1. Улавливание пыли в циклонах
- •§ 2. Типы циклонов и основные правила их эксплуатации
- •§ 3. Определение гидравлического сопротивления и размеров циклона
- •§ 4. Расчет эффективности циклонов
- •§ 5. Батарейные циклоны (мультициклоны)
- •§ 6. Вихревые пылеуловители
- •§ 7. Ротационные пылеуловители
- •Глава 5
- •§ 1. Общие сведения о процессе фильтрования
- •§ 2. Характеристики пористой перегородки
- •§ 3. Механизмы процесса фильтрования
- •§ 4. Аналитическое определение эффективности и гидравлического сопротивления пористого фильтра
- •Глава 6
- •§ 1. Волокнистые фильтры
- •§ 2. Тканевые фильтры
- •§ 3. Зернистые и металлокерамические фильтры
- •§ 4. Фильтры-туманоуловители
- •§ 5. Воздушные фильтры
- •Глава 7
- •§ 1. Мокрая очистка газов и область ее применения
- •§ 2. Захват частиц пыли жидкостью
- •§3. Энергетический метод расчета мокрых пылеуловителей
- •§4. Тепло- и массообмен в мокрых пылеуловителях
- •Глава 8
- •§1. Форсуночные скрубберы
- •§ 2. Скрубберы Вентури
- •Расчет скрубберов Вентури
- •3. Динамические газопромыватели
- •Глава 9
- •§ 1. Мокрые аппараты центробежного действия
- •§ 2. Мокрые аппараты ударно-инерционного действия
- •§ 3. Тарельчатые газоочистные аппараты
- •Глава 10
- •§ 1. Устройства для диспергирования жидкости
- •§ 2. Брызгоунос и сепарация капель из газового потока
- •§ 3. Водное хозяйство мокрых газоочисток
- •Глава 11
- •§ 1. Ионизация газов и коронный разряд
- •§ 2. Физические основы электрической очистки газа
- •§ 3. Вольт амперные характеристики коронного разряда
- •§ 4. Теоретическая эффективность электрической очистки газа
- •Глава 12
- •§ 1 Элементы конструкций электрофильтров
- •§ 2. Однозонные унифицированные сухие электрофильтры
- •3. Мокрые трубчатые однозонные электрофильтры типа дм
- •§ 4. Двухзонные электрофильтры
- •Глава 13
- •§ 1. Способы повышения напряжения и выпрямления тока
- •§ 2. Методы регулирования напряжения на электродах
- •§ 3. Агрегаты питания электрофильтров
- •§ 4. Преобразовательные подстанции
- •Глава 14
- •§ 1. Влияние различных факторов на работу электрофильтра
- •§ 2. Электрические режимы питания электрофильтров
- •§ 3. Эксплуатация электрофильтров
- •§ 4. Выбор и расчет эффективности электрофильтров
- •Глава 15
- •§ 1. Основы процесса физической абсорбции
- •§ 2. Материальный баланс и основные уравнения процесса абсорбции
- •§ 3. Коэффициент абсорбции — массопередачи
- •§ 4. Абсорбционные аппараты и установки
- •§ 5. Основы расчета абсорберов
- •Глава 16
- •§ 1. Физика процесса. Изотермы адсорбции
- •§ 2. Виды и характеристики адсорбентов
- •§ 3. Устройство и основы расчета адсорбентов с неподвижным слоем поглотителя
- •§ 4. Адсорберы с кипящим слоем поглотителя
- •§ 5. Ионообменная очистка газов
- •Глава 17
- •§ 1. Охлаждение газов подмешиванием атмосферного воздуха
- •§ 2. Охлаждение газов в поверхностных теплообменниках
- •§ 3. Охлаждение газов при непосредственном контакте с водой
- •Глава 18
- •§ 1. Конструкции и элементы газоходов
- •§ 2. Основы аэродинамического расчета газоотводящего тракта
- •§ 3. Выбор дымососов и вентиляторов
- •§ 4. Дымовые трубы
- •Глава 19
- •§ 1. Устройства для выгрузки сухой пыли
- •§ 2. Устройства для удаления шлама
- •§ 3. Механическая транспортировка пыли
- •§ 4. Пневмотранспорт для удаления пыли
- •Глава 20
- •§ 1. Расчет капитальных затрат и эксплуатационных расходов
- •§ 2. Оценка экономичности работы газоочисток
- •§ 3. Экономические показатели газоочисток различных типов
- •§ 4. Пути снижения себестоимости очистки газа
- •§ 5. Ущерб от загрязнения воздуха
- •Глава 21
- •§ 1. Основы рационального выбора пылеуловителей
- •§ 2. Типизация газоочистных аппаратов
- •§ 3. Правила технической эксплуатации газоочистных установок
- •§ 4. Меры безопасности и охраны труда
- •Часть II газоочистные установки различных производств черной металлургии
- •Глава 22
- •§ 1. Характеристика выбросов агломерационного производства
- •§ 2. Отвод и обеспыливание газов агломерационных машин
- •§ 3. Улавливание и очистка вентиляционных и неорганизованных выбросов
- •§ 4. Очистка газов при производстве окатышей
- •Глава 23
- •§ 1. Очистка газов от сернистого ангидрида. Классификация методов
- •§ 2. Известняково-известковые методы очистки
- •§ 3. Циклические сульфитные методы очистки от сернистого ангидрида
- •§ 4. Адсорбционные и каталитические методы очистки от сернистого ангидрида
- •§ 5. Очистка газов агломерационных машин от оксида углерода
- •§ 6. Очистка агломерационных газов от оксидов азота
- •§ 7. Комплексная схема очистки газов агломерационных машин
- •Глава 24
- •§ 1. Свойства и выход коксового газа
- •§ 2. Очистка коксового газа
- •§ 3. Вредные выбросы коксохимического производства и их очистка
- •Глава 25
- •§ 1. Характеристика доменного газа и колошниковой пыли
- •§ 2. Схемы очистки доменного газа
- •§ 3. Вредные выбросы доменного производства и их очистка
- •§ 4. Борьба с выбросами при грануляции шлака
- •§ 5. Выбросы миксерного отделения и их очистка
- •Глава 26
- •§ 1. Характеристика отходящих газов и пыли
- •§ 2. Обеспыливание отходящих газов мартеновских печей
- •§ 3. Очистка отходящих газов двухванных печей
- •§ 4. Оксиды азота и борьба с ними в мартеновском производстве
- •§ 5. Неорганизованные выбросы и борьба с ними
- •Глава 27
- •§ 1. Характеристика газопылевых выбросов
- •§ 2. Охлаждение конвертерных газов
- •§ 3. Газоотводящие тракты кислородных конвертеров
- •§ 4. Установки с полным дожиганием оксида углерода
- •§ 5. Установки с частичным дожиганием оксида углерода
- •§ 6. Установки без дожигания оксида углерода
- •Глава 28
- •§ 1. Характеристика газопылевыделений
- •§ 2. Отсос и улавливание выделяющихся газов
- •§ 3. Способы очистки газов
- •Глава 29
- •§1. Пылегазовые выбросы ферросплавных печей
- •§ 2. Очистка газов закрытых ферросплавных печей
- •§ 3. Очистка газов открытых ферросплавных печей
- •Характеристика выбросов печей ферросплавного производства.
- •Как осуществляют очистку газов закрытых печей?
- •Какие схемы применяют для очистки газов открытых печей?
- •Глава 30
- •§ 1. Локализация и удаление выбросов прокатных станов
- •§ 2. Обеспыливание выбросов машин огневой зачистки (моз)
- •§ 3. Борьба с вредными выбросами травильных отделений
- •Глава 31
- •§ 1. Обеспыливание отходящих газов в огнеупорных цехах
- •§ 2. Очистка вредных выбросов литейных цехов
- •§ 3. Очистка отходящих газов котельных агрегатов
- •Часть III газоочистные установки различных производств цветной металлургии
- •Глава 32
- •§ 1. Обеспыливание отходящих газов агломерационных машин
- •§ 2. Очистка отходящих газов шахтных печей для выплавки чернового свинца
- •§ 3. Очистка газов купеляционных печей и шлаковозгоночных установок
- •§ 4. Очистка газов при переработке вторичного свинцового сырья
- •§ 5. Обеспыливание отходящих газов обжиговых печей кипящего слоя (кс) цинкового производства
- •§ 6. Очистка газов вращающихся трубчатых печей (вельцпечей) цинкового производства
- •§ 7. Дополнительная очистка газов, идущих от печей кс на производство серной кислоты
- •Глава 33 пылеулавливание в медной промышленности
- •§ 1. Очистка газов на заводах, выплавляющих медь из первичного сырья
- •§ 2. Очистка газов на медеплавильных заводах при переработке вторичного сырья
- •§ 3. Обеспыливание газов на медно-серных заводах
- •Глава 34
- •§ 1. Пылеулавливание при производстве никеля
- •§ 2. Обеспыливание газов на оловянных заводах
- •§ 3. Пылеулавливание при производстве сурьмы
- •§ 4. Очистка газов при производстве ртути
- •§ 2. Очистка газов при производстве алюминия
- •§ 3. Обеспыливание газов при производстве силуминов (а1—Si сплавов)
- •§ 4. Очистка газов при производстве магния
- •Глава 36
- •1. Улавливание хлоридов редких металлов
- •§ 2. Очистка газов при производстве рассеянных металлов
- •§ 3. Очистка газов при производстве тугоплавких металлов
- •Глава 37
- •§ 1. Очистка технологических газов
- •§ 2. Очистка газов аспирационных систем
- •Глава 38
- •§ 1. Промышленные способы очистки слабоконцентрированных отходящих газов от сернистого ангидрида
- •§ 2. Очистка газов от различных газообразных химических элементов и соединений
- •Глава 39
- •§ 1. Особенности свойств пыли и газовых потоков
- •§ 2. Особенности выбора газоочистных аппаратов и эксплуатации газоочистных установок
- •§ 3. Особенности экономики газоочистных установок в цветной металлургии
- •Глава 40
- •§ 1. Снижение вредных выбросов и совершенствование газоочистных аппаратов и установок
- •§ 2. Повышение уровня безотходности производства
- •§ 3. Оптимизация очередности внедрения мероприятий по защите воздушного бассейна
- •§ 4. Рациональное распределение топлива с целью уменьшения загрязнения атмосферы
§ 2. Известняково-известковые методы очистки
В металлургии наиболее распространен известняковый метод очистки газов от SO2. Преимуществами этого метода являются: простота технологической схемы, доступность и дешевизна сорбента, относительно малые капитальные затраты, возможность очистки газа без предварительного охлаждения и тонкого обеспыливания. К недостаткам метода относятся: низкий коэффициент использования известняка (как правило, не выше 50 %), получение в качестве продукта реакции не используемого в процессе шлама, относительно невысокая степень очистки, подверженность забиванию отложениями абсорбционной аппаратуры и коммуникаций.
Метод внедрен в промышленность в ряде стран, в том числе и в СССР. На Магнитогорском металлургическом комбинате работает одна из крупнейших в мире установок производительностью около 3 млн. м3/ч.
Принципиальная схема известнякового метода очистки представлена на рис. 23.3.
Газ, предварительно очищенный от крупной пыли, поступает в полый форсуночный скруббер, где орошается суспензией известняка СаСОз, взаимодействующей с SO2 по основной реакции
SO2+CaCO3 = CaSO3 + CO2. (23.2)
Сульфит кальция CaSO3, частично окисляющийся до CaSO4, плохо растворим и выпадает в осадок. Некоторое количество образующегося в ходе побочной реакции хорошо растворимого бисульфита кальция Ca(HSO3)2, взаимодействуя с поглотителем, также переходит в CaSO3 и CaSO4 и выделяется из раствора.
Рис. 23.3. Схема очистки газов от SO2 известняковым методом: 1 - скруббер; 2 — пылеуловитель; 3 — форсунка; 4 — гидрозатвор; б, 10 —- фильтр для отделения крупных частиц; 6 — циркуляционный сборник; 7 — насос; 8 — гидроциклон; 9 — вакуум-фильтр.
Продукты реакции в скруббере через гидрозатвор и фильтр грубой очистки частично поступают в циркуляционный сборник, а частично отводятся из процесса. Отводимую из процесса жидкость, содержащую кристаллы CaSO3 и CaSО4, для отделения твердой фазы и ее обезвоживания пропускают через гидроциклон и вакуум-фильтр. Полученный шлам направляют в отвал, а освобожденный от кристаллов раствор — в циркуляционный сборник. Сюда же направляют свежую известняковую суспензию и воду, компенсирующую потери. Из циркуляционного сборника раствор, состоящий из суспензии известняка и кристаллов сульфита и сульфата кальция, с помощью насоса через фильтр подается на орошение скруббера. Очищенный от SO2 газ выбрасывается из скруббера через каплеуловитель в атмосферу. Степень очистки газа может быть доведена до 85%.
Известняковую суспензию приготовляют путем предварительного дробления известняка на молотковых дробилках и размола его в шаровых мельницах, работающих в замкнутом цикле с гидроциклонами (рис. 23.4), куда направляют пульпу, разбавленную водой до заданной плотности. В гидроциклонах происходит разделение частиц известняка по крупности: частицы размером более 70 мкм возвращаются в шаровые мельницы на домалывание, а менее 70 мкм — в сборник готовой суспензии.
Рис. 23.4. Схема приготовления известняковой суспензии: 1 — транспортер; 2 — бункер; 3 — дозатор; 4 — шаровая мельница; 5 — циркуляционный насос; 6 — сборник; 7 — отстойник; 8 — гидроциклон; 9 — сборник готовой суспензии; 10 — насос.
При применении в качестве сорбента известкового молока Са(ОН)2 вместо известняка можно сохранить ту же принципиальную схему и получить несколько более высокую степень очистки (до 90 %). В этом случае основная реакция имеет вид
SO2 + Са (ОН)2 = CaSO3 + Н2О. (23.3)
Однако большая доступность сорбента и более низкая стоимость очистки дают преимущество известняковому методу.
Проведенные исследования и опыт работы крупных промышленных установок позволили установить влияние ряда факторов и дать рекомендации по применению известняковой очистки газов:
1) поглотительная способность суспензии зависит от сорта известняка и уменьшается с увеличением в нем содержания оксида магния;
2) рекомендуемая тонина помола известняка составляет 40—50 мкм. При более крупном помоле поглотительная способность суспензии уменьшается; при более мелком помоле возрастает расход энергии без улучшения работы установки;
3) плотность известняковой суспензии рекомендуется поддерживать на уровне 100 г известняка на 1 л воды. Дальнейшее повышение плотности не приводит к улучшению качества очистки;
4) важное значение для качества очистки имеет скорость перемешивания суспензии, которое обычно осуществляют механической мешалкой с интенсивностью 0,4—0,8 1/с или барботированием с расходом сжатого воздуха до 0,7 м3/мин на 1 м2 поверхности жидкости;
5) удельный расход суспензии т, дм3/м3, и плотность орошения γ, м3/(м2·ч), существенно влияют на степень очистки газа. С увеличением этих величин эффективность абсорбции значительно возрастает (рис. 23.5). При повышении производительности установки путем увеличения скорости газа в скруббере для поддержания высокой степени очистки следует увеличивать удельный расход и плотность орошения скруббера;
Рис. 23.5. Влияние плотности орошающей суспензии, удельного орошения и коэффициента использования известняка на степень поглощения SO2
6) коэффициент использования известняка рекомендуется поддерживать на уровне ~50 %. Попытки увеличить этот коэффициент приводят к снижению эффективности работы установки. Снижение коэффициента использования еще более увеличивает количество отвалов. В настоящее время разрабатываются системы очистки, позволяющие повысить коэффициент использования известняка до 100% с получением гипса в качестве конечного продукта;
7) орошение скруббера рекомендуется делать двух- или трехъярусным, что, во-первых, дает несколько лучший коэффициент очистки (по сравнению с одноярусным орошением) и, во-вторых, уменьшает вредное влияние неорошаемых зон, образующихся при засорении отдельных форсунок;
8) значительные затруднения в эксплуатации вызывают нерастворимые отложения, образующиеся в верхней неорошаемой части скрубберов и отводящих газоходах. Наилучшие результаты борьбы с ними дают смыв отложений в скруббере суспензией, а в газоходах — технической водой;
9) из скрубберов с уходящими газами уносится капельная влага. Величина уноса растет с увеличением скорости газового потока в скруббере и с уменьшением размера капель. Для борьбы с каплеуносом скрубберы снабжают каплеуловителями, большей частью с центробежными завихрителями, обеспечивающими наилучшие результаты. Предпочтение отдают установке общего каплеуловителя для нескольких скрубберов. В этом случае в коллекторе происходит дополнительное отделение капельной влаги и общая эффективность улавливания повышается; доля уловленной капельной влаги достигает 98 % при потере давления в каплеуловителе в среднем 1000 Па;
10) в настоящее время скорость газов в скрубберах, как правило, не превышает 2 м/с. Однако проведенные технико-экономические подсчеты показывают целесообразность увеличения скоростей до 5 м/с. При этом следует решать проблему каплеуноса, который в этом случае значительно возрастает. Кроме того, должны быть увеличены плотность орошения и концентрация известняка в суспензии.
Ниже приводятся результаты проведенных технико-экономических расчетов по варианту I (w = 5 м/с) и варианту II (до = 2 м/с):
|
Вариант I |
Вариант II |
Количество отходящих газов аглофабрики, тыс. м3/ч |
3 300 |
3 300 |
Степень очистки газа, % |
90 |
90 |
Скорость газа в скруббере, м/с |
5 |
2 |
Количество скрубберов, шт. |
10 |
25 |
Расход известняка, т/ч |
59,2 |
59,2 |
Удельное орошение, т/м3 |
8,7 |
4,2 |
Плотность орошения, м3/(м2·ч) |
160 |
82 |
Количество циркулирующей суспензии, м3/ч |
28 800 |
37 100 |
Общее аэродинамическое сопротивление, кПа |
3,0 |
1,9 |
Расход электроэнергии, кВт·ч |
14 700 |
16 120 |
Численность обслуживающего персонала, чел. |
110 |
160 |
Полная стоимость сооружения, тыс. руб. |
4250 |
5700 |
Годовые эксплуатационные расходы, тыс. руб. |
4312,6 |
4891,5 |
Как видно, по варианту I капитальные затраты на сооружение сероочистки и эксплуатационные расходы соответственно на 1450 и 578,9 тыс. руб. ниже, чем по варианту II. Отсюда экономическая эффективность скоростных скрубберов составляет:
Э = Сэ + 0,12 К = 578,9 + 0,12. 1450 = 752,9 тыс. руб./год, что подтверждает целесообразность их применения.