Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Старк-Пылеулавливание_учебник-ВЕСЬ-копия.doc
Скачиваний:
425
Добавлен:
21.08.2019
Размер:
36.47 Mб
Скачать

§ 1. Сепарация частиц пыли из криволинейного потока газа

При движении частицы пыли в криволинейном потоке газа на нее действуют две силы: аэродинамическая, обусловленная движением частицы в потоке газа со скоростью wг, и центробежная, с которой частица стремится двигаться от центра в направлении радиуса со скоростью wR (рис. 3.1).

Рис. 3.1. Движение частиц пыли в криволинейном потоке газа

Рассматривая движение частицы в радиальном направлении, на основании второго закона Ньютона можно написать дифференциальное уравнение следующего вида:

, (3.1)

где М - масса частицы, кг; wг - скорость газа, м/с; R - радиус кривизны траектории в рассматриваемой точке, м; С - аэродинамический коэффициент; F - площадь сечения частицы в направлении, нормальном к радиусу, м2; wR - скорость движения частицы в радиальном направлении, м/с; г и ч - плотности газа и пыли (частицы), кг/м3; t - время, с.

Принимая форму частицы сферической, а движение в радиальном направлении ламинарным, в уравнение (3.1) можно подставить следующие величины:

.

После несложных преобразований будем иметь

. (3.2)

Принимая, что ; и , получим

. (3.3.)

В результате решения этого уравнения и ряда преобразова­ний имеем

, (3.4)

откуда

. (3.5)

Следовательно,

. (3.6)

Из уравнения (3.6) можно определить, какое время t нужно для перехода частицы размером d с радиуса R1 на радиус R или какое расстояние в радиальном направлении RR1 пройдет частица за время t.

Полученное выражение показывает, что сепарация улучшается с увеличением скорости газа wг, размера частицы d и ее плотности ч и ухудшается с увеличением радиуса R и вязкости газа .

§ 2. Жалюзийные пылеуловители

С помощью жалюзийной решетки (рис. 3.2, а), установленной в газоходе и состоящей из ряда наклонных пластин, поток газа можно разделить на две части. Большая часть газа (~95%) огибает пластины и, частично освобождается при этом от пыли, продолжает двигаться дальше в прежнем направлении. Меньшая часть газа (~5 %), обогащенная пылью, отводится для очистки в циклон, после чего присоединяется к основному потоку газа. Движение газа через циклон осуществляется главным образом за счет перепада давления на жалюзийной решетке.

Рис. 3.2. Жалюзийный пылеуловитель: а — принцип действия; б — схема аппарата

В основе работы жалюзийного пылеуловителя лежит инерционно-отражательный принцип. С одной стороны, частицы пыли выпадают из потока газа под действием сил инерции при крутом повороте его в жалюзийной решетке, а с другой — отражаются при непосредственном ударе о пластину. В обоих случаях частицы попадают в меньшую часть потока, обогащая ее пылью.

Общая эффективность очистки газа в жалюзийном пылеуловителе ηобщ определяется как произведение степени очистки в решетке ηр и циклоне ηц: ηобщ= ηр·ηц.

Оптимальная скорость подхода газа к решетке лежит в пределах 12— 20 м/с в зависимости от конструкции решетки, т. е. примерно равна скорости газа в газоходах.

Оптимальная скорость отсоса газа в циклон примерно на 25 % выше скорости подхода газа к решетке.

Из промышленных жалюзийных пылеуловителей наиболее известен пылеуловитель системы ВТИ (рис. 3.2,6), в котором решетка выполнена из стали углового профиля обычно 40X40 мм. Пылеуловитель ВТИ прост в изготовлении, затраты металла минимальны, места для установки почти не требуется, так как его размещают непосредственно в газоходе. Однако он может эффективно улавливать только крупную пыль (размером более 30— 40 мкм), поэтому общая эффективность его невысока. Основное назначение этого аппарата — предохранить от износа дымососы паровых котлов, перекачивающие газ, засоренный золой (в основном крупных фракций).