
- •Лекция 1
- •3. Введем понятие – поток n вектора напряженности через площадку s:
- •Лекция 2
- •3. Два разноименно заряженных проводника называются конденсатором, если, если расстояние между ними намного меньше их размеров (рис.2.11)
- •Лекция 3
- •Н e1 e2 a а рисунке показан пример схемы цепи постоянного тока, в которой действуют два источника е1 и е2.
- •Лекция 4
- •Искровой разряд.
- •Коронный разряд.
- •Дуговой разряд.
- •Лекция 5
- •2. В результате многих опытов разных ученых был выведен закон Био – Савара – Лапласа, позволяющий рассчитывать магнитную индукцию полей, создаваемых проводниками с током.
- •3. Поместим проводник, согнутый в виде прямоугольной рамки, в однородное магнитное поле.
- •Лекция 6
- •2. Пусть частица с зарядом q и скоростью V влетает в однородное магнитное поле перпендикулярно к линиям магнитной индукции b (рис.6.3).
- •Лекция 7
- •2. Пусть в проводнике в виде катушки течет ток (рис.7.4).
- •3. Рассмотрим электрическую цепь, изображенную на рис.7.6.
- •Лекция 8
- •Лекция 9
- •2. Из уравнений Максвелла были получены волновые уравнения для векторов е и в. В случае однородной нейтральной непроводящей среды с постоянными проницаемостями ε и μ
- •3. Электромагнитные волны классифицируются по длине волны λ или связанной с ней частотой υ волны. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.
- •Лекция 10
- •Еще во времена ранней истории были открыты законы лучевой, или так называемой геометрической, оптики.
- •3. Линза диск из однородного материала, ограниченный двумя полированными поверхностями — сферическими или плоской и сферической.
- •Лекция 11
- •3. Если источник света удален и волну, которая падает на узкую длинную щель можно считать плоской, то наблюдается дифракция Фраунгофера.
- •Лекция 12
- •Лекция 13
- •3. Эйнштейн выдвинул гипотезу, что поток света состоит из дискретных частиц – фотонов. Термин «фотон» был введен в 1926 году. Существование фотонов подтверждается опытами.
- •Лекция 14
- •5. Люминесценция — нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. В зависимости от вида поглощаемой энергии люминесценция делится на виды:
- •Лекция 15
- •4. Рассмотрим атом, в котором электрон движется вокруг ядра (атом водорода или ион гелия). Потенциальная энергия электрона в поле ядра
- •Лекция 16
3. Линза диск из однородного материала, ограниченный двумя полированными поверхностями — сферическими или плоской и сферической.
К группе собирающих линз относят линзы, у которых середина толще их краёв, а к группе рассеивающих — линзы, края которых толще середины. Это выполняется, если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например, пузырёк воздуха в воде — двояковыпуклая рассеивающая линза.
Линзы характеризуются фокусным расстоянием или оптической силой (измеряется в диоптриях). Оптическая ось — прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O — оптический центр — точка, которая у двояковыпуклых или двояковогнутых с одинаковыми радиусами поверхностей линз находится на оптической оси внутри линзы, в её центре.
Рассмотрим построение хода луча произвольного направления в тонкой собирающей линзе. Для этого воспользуемся двумя свойствами тонкой линзы:
Луч, прошедший через оптический центр линзы, не меняет своего направления;
Параллельные лучи, проходящие через линзу, сходятся в фокальной плоскости.
Лучи, проходящие через фокус после преломления в линзе идут параллельно оптической оси.
Рис.
10.5
Пусть AB - объект, находящийся на некотором расстоянии от линзы, значительно превышающем её фокусное расстояние. От каждой точки предмета через линзу пройдёт бесчисленное количество лучей, из которых, для наглядности, на рисунке схематически изображён ход только трёх лучей.
Три луча, исходящие из точки A, пройдут через линзу и пересекутся в соответствующих точках схода на A1B1, образуя изображение. Полученное изображение является действительным и перевёрнутым.
Если предмет поместить на расстоянии, меньшем главного фокусного расстояния (рис.10.5), то лучи выйдут из линзы расходящимся пучком, нигде не пересекаясь. Изображение при этом получается мнимое, прямое и увеличенное, т. е. в данном случае линза работает как лупа.
Рис.10.6
Расстояния от точки предмета до центра линзы и от точки изображения до центра линзы называются сопряжёнными фокусными расстояниями рис.10.7).
Рис.10.7
Эти величины находятся в зависимости между собой и определяются формулой, называемой формулой тонкой линзы
где
—
расстояние от линзы до предмета;
—
расстояние от линзы до изображения;
—
главное фокусное расстояние линзы.
Оптической силой называется величина, обратная фокусному расстоянию линзы D = 1/f/. Оптическую силу принято выражать в диоптриях, для собирающих линз она имеет положительное значение, для рассеивающих – отрицательное.
Линзы являются универсальным оптическим элементом большинства оптических систем. Традиционное применение линз — бинокли, телескопы, оптические прицелы, теодолиты, микроскопы и фотовидеотехника. Одиночные собирающие линзы используются как увеличительные стёкла. Линзы используют в таких приспособлениях, как очки и контактные линзы.
В радиоастрономии и радарах часто используются диэлектрические линзы, собирающие поток радиоволн в приёмную антенну, либо фокусирующие на цели.