Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика ответы.rtf
Скачиваний:
17
Добавлен:
02.08.2019
Размер:
8.09 Mб
Скачать

10. Экстремум функции. Необходимые и достаточные условия его существования.

Экстре́мум (лат. extremum — крайний) в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).

Пусть дана функция и — внутренняя точка области определения f. Тогда

  • x0 называется точкой локального максимума функции f, если существует проколотая окрестность такая, что

  • x0 называется точкой локального минимума функции f, если существует проколотая окрестность такая, что

Если неравенства выше строгие, то x0 называется точкой строгого локального максимума или минимума соответственно.

  • x0 называется точкой абсолютного (глобального) максимума, если

  • x0 называется точкой абсолютного минимума, если

Значение функции f(x0) называют (строгим) (локальным) максимумом или минимумом в зависимости от ситуации. Точки, являющиеся точками (локального) максимума или минимума, называются точками (локального) экстремума.

Необходимые условия существования локальных экстремумов

  • Лемма Ферма. Пусть функция дифференцируема в точке локального экстремума x0. Тогда:

.

  • Если в точке экстремума существует первая частная производная (по какому-либо аргументу), то она равна нулю.

Достаточные условия существования локальных экстремумов

  • Пусть функция непрерывна в и существуют конечные или бесконечные односторонние производные . Тогда при условии

x0 является точкой строгого локального максимума. А если

то x0 является точкой строгого локального минимума.

Заметим, что при этом функция не дифференцируема в точке x0

  • Пусть функция f непрерывна и дважды дифференцируема в точке x0. Тогда при условии

и

x0 является точкой локального максимума. А если

и

то x0 является точкой локального минимума.

11. Точки перегиба функций, выпуклость и вогнутость функции.

Точка перегиба функции внутренняя точка x0 области определения f, такая что f непрерывна в этой точке, существует конечная или определенного знака бесконечная производная в этой точке, и x0 является одновременно концом интервала строгой выпуклости вверх и началом интервала строгой выпуклости вниз, или наоборот.

Неофициальное: В этом случае точка (x0;f(x0)) является точкой перегиба графика функции, то есть график функции f в точке (x0;f(x0)) «перегибается» через касательную к нему в этой точке: при x < x0 касательная лежит под графиком f, а при x > x0 — над графиком f (или наоборот)

Необходимое условие существования точки перегиба: если функция f(x), дважды дифференцируемая в некоторой окрестности точки x0, имеет в x0 точку перегиба, то .

Достаточное условие существования точки перегиба: если функция f(x) в некоторой окрестности точки x k раз непрерывно дифференцируема, причем k нечётно и , и при , а , то функция f(x) имеет в x0 точку перегиба.

Выпуклость и вогнутость

свойство графика функции у = f (x) (кривой), заключающееся в том, что каждая дуга кривой лежит не выше (не ниже) своей хорды; в первом случае график функции f (x) обращён выпуклостью книзу (вогнутостью кверху) и сама функция называется выпуклой (рис. 1, а), во втором — график обращён вогнутостью книзу (выпуклостью кверху) и функция называется вогнутой (рис. 1, б). Если существуют производные f '(x) и f "(х), то первый случай имеет место при условии, что f "(x) ≥ 0, а второй при f "(x) ≤ 0 (во всех точках рассматриваемого промежутка). Выпуклость (книзу) можно охарактеризовать также тем, что дуга кривой лежит не ниже касательной, в окрестности любой своей точки (рис. 2, a), а вогнутость (книзу) — тем, что дуга кривой лежит не выше касательной (рис. 2, б). Аналогично определяются В. и в. поверхности.

Рис. 1 к ст. Выпуклость и вогнутость.

Рис. 2 к ст. Выпуклость и вогнутость.