Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика ответы.rtf
Скачиваний:
17
Добавлен:
02.08.2019
Размер:
8.09 Mб
Скачать

20. Общее понятие о линейных векторных пространствах. Их определение.

Линейное, или векторное пространство над полем P — это непустое множество L, на котором введены операции

  1. сложения, то есть каждой паре элементов множества ставится в соответствие элемент того же множества, обозначаемый и

  2. умножения на скаляр (то есть элемент поля P), то есть любому элементу и любому элементу ставится в соответствие единственный элемент из , обозначаемый .

При этом на операции накладываются следующие условия:

  1. , для любых (коммутативность сложения);

  2. , для любых (ассоциативность сложения);

  3. существует такой элемент , что для любого (существование нейтрального элемента относительно сложения), в частности L не пусто;

  4. для любого существует такой элемент , что (существование противоположного элемента относительно сложения).

  5. (ассоциативность умножения на скаляр);

  6. (унитарность: умножение на нейтральный (по умножению) элемент поля P сохраняет вектор).

  7. (дистрибутивность умножения на вектор относительно сложения скаляров);

  8. (дистрибутивность умножения на скаляр относительно сложения векторов).

Элементы множества L называют векторами, а элементы поля Pскалярами. Свойства 1-4 совпадают с аксиомами абелевой группы.

  1. Векторное пространство является абелевой группой по сложению.

  2. Нейтральный элемент является единственным, что вытекает из групповых свойств.

  3. для любого .

  4. Для любого противоположный элемент является единственным, что вытекает из групповых свойств.

  5. для любого .

  6. для любых и .

  7. для любого .

21. Базисы в лвп. Их преобразования. Координатное представление векторов.

Любой декартовой системе координат на плоскости или в трехмерном пространстве (также и в пространстве другой размерности) может быть сопоставлен базис, состоящий из векторов, каждый из которых направлен вдоль своей координатной оси. Это относится и к прямоугольным декартовым координатам (тогда соответствующий базис называется ортогональным), так и к косоугольным декартовым координатам (которым будет соответствовать неортогональный базис).

Часто удобно выбрать длину (норму) каждого из базисных векторов единичной, такой базис называется нормированным.

Наиболее часто базис выбирают ортогональным и нормированным одновременно, тогда он называется ортонормированным.

В любом векторном пространстве базис можно выбрать различным образом (поменяв направления его векторов или их длины, например).

Декартовы координаты в трехмерном пространстве (левая (на рисунке слева) и правая (справа) декартовы системы координат (левый и правый базисы). Принято по умолчанию использовать правые базисы (это общепринятое соглашение, если только какие-то особые причины не заставляют от него отойти — и тогда это оговаривается явно). Базисом, соответствующим такой системе координат является тройка векторов, каждый из которых направлен вдоль какой-то из осей (изображаются три базисных вектора как правило исходящими из общего начала).

Обозначение векторов базиса может быть в принципе произвольным. Часто используют какую-нибудь букву с индексом (числовым или совпадающим с названием координатной оси), например:

или

— типичные обозначения базиса двумерного пространства (плоскости).

или

— трехмерного пространства. Для трехмерного пространства часто по традиции используется и обозначение

Представление какого-то конкретного (любого) вектора пространства в виде линейной комбинации векторов базиса (суммы базисных векторов числовыми коэффициентами), например

или

или, употребляя знак суммы Σ:

называется разложением этого вектора по этому базису.

Числовые коэффициенты (ax,ay,az) называются коэффициентами разложения, а их набор в целом — представлением (или представителем) вектора в базисе (Разложение вектора по конкретному базису единственно; разложение одного и того же вектора по разным базисам — разное, то есть получается разный набор конкретных чисел, однако в результате при суммировании — как показано выше — дают один и тот же вектор).

Базис Га́меля (англ. Hamel basis) — множество векторов в линейном пространстве, таких, что любой вектор пространства может быть представлен в виде некоторой их конечной линейной комбинации (полнота базиса), и такое представление для любого вектора единственно.

Критерием единственности решения задачи разложения вектора по полной системе векторов является линейная независимость векторов, входящих в полную систему. Линейная независимость означает, что всякая линейная комбинация векторов системы, в которой хотя бы один коэффициент ненулевой, имеет ненулевую сумму. То есть это эквивалентно единственности разложения нулевого вектора.

В случае линейных пространств, когда всякий ненулевой коэффициент обратим, линейная независимость эквивалентна невозможности выразить какой-либо вектор полной системы линейной комбинацией остальных векторов. (В более общей ситуации — модулей над кольцами — эти два свойства неэквивалентны). Невозможность выразить никакой вектор базиса через остальные означает минимальность базиса как полной системы векторов — при удалении любого из них теряется полнота.

В вопросе о существовании базисов основной является следующая лемма (доказательство этой леммы в общем случае неконструктивно и использует аксиому выбора):

Лемма. Пусть S1 — полная, а S2 — линейно независимая система векторов. Тогда система S1 содержит набор векторов, дополняющий S2 до базиса пространства V.

Следствием этой леммы являются утверждения:

  1. Каждое линейное пространство обладает базисом.

  2. Базис пространства можно выделить из любой полной системы векторов.

  3. Всякую линейно независимую систему можно дополнить до базиса пространства V.

Любые два базиса в линейном пространстве равномощны, так что мощность базиса — величина, независящая от выбора базисных векторов. Она называется размерностью пространства (обозначается dim V). Если линейное пространство имеет конечный базис, его размерность конечна и оно называется конечномерным, в противном случае его размерность бесконечна, и пространство называется бесконечномерным.

Выбранный базис линейного пространства позволяет ввести координатное представление векторов, чем подготавливается использование аналитических методов.

Линейное отображение из одного линейного пространства в другое однозначно определено, если задано на векторах какого-нибудь базиса. Комбинация этого факта с возможностью координатного представления векторов предопределяет применение матриц для изучения линейных отображений векторных пространств (в первую очередь — конечномерных). При этом многие факты из теории матриц получают наглядное представление и приобретают весьма содержательный смысл, когда они выражены на языке линейных пространств. И выбор базиса при этом служит хоть и вспомогательным, но в то же время ключевым средством.

  • Векторы пространства образуют базис тогда и только тогда, когда определитель матрицы, составленной из координатных столбцов этих векторов, не равен 0: .

  • В пространстве всех многочленов над полем один из базисов составляют степенные функции: .

  • Понятие базиса используется в бесконечномерном случае, например вещественные числа образуют линейное пространство над рациональными числами и оно имеет континуальный базис Гамеля и, соответственно, континуальную размерность.

  • Преобразования базисов и координат, криволинейные координаты

  • Преобразования базисов и координат

  • Взаимные, сопряженные базисы

  • В дальнейшем речь пойдет о базисах в трехмерном пространстве.

  • Определение. Базисы ri , rk называются взаимными или сопряженными, если выполнено условие (ri , rk) = .

  • Теорема. Для любого базиса ri существует единственный взаимный базис.

  • Из условия r1 r2 , r1 r3 , поэтому этот вектор надо искать в виде c[r2 , r3], из условия (r1 , r1) = 1 находится множитель c. Таким образом,

  • r1 = [r2 , r3]/( r1 , r2 , r3 ), r2 = [r3 , r1]/( r1 , r2 , r3 ), r3 = [r1 , r2]/( r1 , r2 , r3 ).

  • Любой вектор пространства можно разложить по базисам

  • x = xk rk = rk xk .

  • Координаты xk называются ковариантными координатами, а xk – контравариантными координатами.

  • Соглашение 1. В любом выражении, состоящем из некоторого числа сомножителей наличие индекса у двух сомножителей на разных уровнях будет означать суммирование по этому индексу от 1 до 3. Следует придерживать единого порядка написания индексов суммирования. Договоримся при написании этих индексов следовать правилу: «левый внизу, правый вверху».

  • Соглашение 2. Иногда, если не возникает путаницы, стрелка над вектором будет опускаться. Тоже самое касается жирности шрифта для обозначения вектора.

  • Например, формулы разложений по базисам будут выглядеть следующим образом

  • x = xk rk = rk xk .

  • Еще один пример: ai cj = ai cj .

  • Найдем выражение для ко и контравариантных координат

  • x = xi ri = ri xi 

  • xi = (x, ri ), xi = (x, ri) (1).

  • Подставляя выражения для координат в разложения вектора, получим формулы Гиббса

  • x = (x, ri ) ri = ri (x, ri) (2)

  • Подставим выражения x из формул Гиббса (2) в (1)

  • xi = (x,rj )(rj,ri) = xj gji (3)

  • xi = (rj,ri) (x,rj ) = gji xj (4)

  • Матрицы gji = (rj,ri), gji = (rj,ri) симметричны и называются метрическими тензорами. Беря в качестве x в формуле (2) вектора rj , rj получим формулы, связывающие векторы взаимных базисов с помощью метрических тензоров

  • rj = gji ri

  • rj = ri gji .

  • Подобные операции носят название операций поднимания и опускания индекса с помощью метрического тензора. Умножим первое равенство на rk второе на rk получим

  • = gji gik

  • = gik gji .

  • Эти равенства показывают, что матрицы метрических тензоров взаимно обратные.