Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика ответы.rtf
Скачиваний:
17
Добавлен:
02.08.2019
Размер:
8.09 Mб
Скачать

16. Методы вычисления непосредственных интегралов.

Метод интегрирования, при котором интеграл путем тождественных преобразований подынтегральной функции (или выражения) и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

Данный метод эквивалентен методу замены переменной

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.

Пусть требуется вычислить интеграл Сделаем подстановку где — функция, имеющая непрерывную производную.

Тогда и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:

Если m = 2k + 1, m > 0, то удобнее сделать подстановку sin x = t.

Если n = 2k + 1, n > 0, то удобнее сделать подстановку cos x = t.

Интегрирование по частям — применение следующей формулы для интегрирования:

В частности, с помощью n-кратного применения этой формулы находится интеграл

где Pn + 1(x) — многочлен (n + 1)-ой степени.

Неопределенный интеграл от любой рациональной дроби на всяком промежутке, на котором знаменатель дроби не обращается в ноль, существует и выражается через элементарные функции, а именно он является алгебраической суммой суперпозиции рациональных дробей, арктангенсов и рациональных логарифмов.

Сам метод заключается в разложении рациональной дроби на сумму простейших дробей.

Всякую правильную рациональную дробь , знаменатель которой разложен на множители

можно представить (и притом единственным образом) в виде следующей суммы простейших дробей:

где Aijltlt — некоторые действительные коэффициенты, обычно вычисляемые с помощью метода неопределённых коэффициентов.

18. Производные высших порядков. Методы их вычисления.

Пусть функция y=f(x) дифференцируема на некотором отрезке [a; b]. Значение производной f'(x), вообще говоря, зависит от x, т.е. производная f'(x) представляет собой тоже функцию переменной x. Пусть эта функция также имеет производную. Дифференцируя ее, получим так называемую вторую производную от функции f(x).

Производная от первой производной называется производной второго порядка или второй производной от данной функции y=f(x) и обозначается y''или f''(x). Итак, y'' = (y')'.

Например, если

у = х5, то y'= 5x4, а y''= 20x4.

Аналогично, в свою очередь, производную второго порядка тоже можно дифференцировать. Производная от второй производной называется производной третьего порядка или третьей производной и обозначается y'''или f'''(x).

Вообще, производной n-го порядка от функции f(x) называется производная (первая) от производной (n - 1)-го порядка и обозначается символом y(n) или f(n)(x): y(n) = (y(n-1))'.

Таким образом, для нахождения производной высшего порядка от данной функции последовательно находят все ее производные низших порядков.

Понятие производной произвольного порядка задаётся рекуррентно. Полагаем

Если функция f дифференцируема в x0, то производная первого порядка определяется соотношением

Пусть теперь производная n-го порядка f(n) определена в некоторой окрестности точки x0 и дифференцируема. Тогда

Если функция имеет в некоторой области D частную производную по одной из переменных, то названная производная, сама являясь функцией от может иметь в некоторой точке частные производные по той же или по любой другой переменной. Для исходной функции эти производные будут частными производными второго порядка (или вторыми частными производными).

или

или

Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Например,