
- •Предмет физики. Предмет механики. Физические модели. Материальная точка. Абсолютно твердое тело. Системы отсчета.
- •Координатное и векторное описание положения частицы. Связь между ними
- •Скорость и ускорение материальной точки.
- •Равнопеременное движение.
- •Нормальное, тангенциальное и полное ускорения. Радиус кривизны траектории.
- •Поступательное и вращательное движение. Кинематика поступательного движения. Связь угловых и линейных характеристик движения.
- •Плоское движение
- •Механический принцип относительности. Инерциальные системы отсчета. Первый закон Ньютона.
- •Преобразования Галилея. Закон сложения скоростей Галилея.
- •Второй закон Ньютона. Сила. Импульс.
- •11.Принцип суперпозиции сил. Третий закон Ньютона.
- •12. Силы инерции. Принцип эквивалентности.
- •Измерения. Системы единиц. Внесистемные единицы. Размерности физических величин.
- •Работа и энергия. Мощность.
- •Консервативные силы. Потенциальные поля.
- •Потенциальная энергия. Связь силы и потенциальной энергии.
- •Силы в механике. Упругая сила.
- •Сила гравитационного притяжения. Однородная сила тяжести.
- •Сухое трение. Вязкое трение.
- •Закон сохранения механической энергии. Границы одномерного движения.
- •Закон сохранения импульса и его связь с однородностью пространства.
- •Абсолютно неупругий удар.
- •Абсолютно упругий удар.
- •Момент импульса и закон его сохранения.
- •Связь закона сохранения момента импульса с изотропностью пространства.
- •Кинетическая энергия вращающегося тела. Расчет момента инерции полого цилиндра.
- •Теорема Штейнера.
- •Динамика вращательного движения системы материальных точек относительно неподвижной оси.
- •Кинетическая энергия плоского движение твердого тела.
- •Равнодействующая сила. Центр тяжести.
- •Лоренцево замедление времени.
- •Лоренцево сокращение длин.
- •Преобразования Лоренца
- •Интервал и его инвариантность.
- •Релятивистский импульс. Основное уравнение релятивисткой динамики.
- •Кинетическая энергия релятивистской частицы. Взаимосвязь массы и энергии. Энергия покоя.
- •2 Тема.
- •1. Потенциальная энергия взаимодействия молекул. Модель идеального газа.
- •2. Жидкость. Кристаллическая решетка.
- •3. Молярная масса и число Авогадро.
- •4. Статистические ансамбли. Средние значения и среднеквадратичные отклонения.
- •6. Идеальный газ. Давление идеального газа.
- •8. Изопроцессы в идеальном газе.
- •9. Закон равнораспределения энергии по степеням свободы молекул в газе.
- •10. Внутренняя энергия. Внутренняя энергия идеального газа.
- •11. Механическая работа в тепловых процессах.
- •12. Первое начало термодинамики
- •1 3. Круговые процессы и тепловые двигатели. К.П.Д. Теплового двигателя.
- •14. Теплоемкость. Теплоемкость при постоянном давлении и теплоемкость при постоянном объеме. Уравнение Майера.
- •15. Работа в адиабатном процессе
- •16. Уравнение Пуассона.
- •17. Энтропия и ее статистический смысл.
- •18. Энтропия идеального газа.
- •19. Изменение энтропии в квазиравновесных процессах.
- •20. К.П.Д. Идеального цикла Карно.
- •21. Второе начало термодинамики (закон возрастания энтропии). Теорема Нернста.
- •22.Распределение Больцмана частиц в потенциальном поле.
- •23. Барометрическая формула.
- •24. Распределение Максвелла по скоростям.
- •25. Распределение Максвелла по модулю скорости.
- •26.Опыт Штерна.
- •27. Явления переноса. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •28. Средняя длина свободного пробега молекулы в газе
- •29.Коэффициент диффузии в газе.
- •30. Коэффициент теплопроводности газов
- •31.Напряженность магнитного поля. Диамагнетики и парамагнетики.
- •32.Условия на границе раздела магнетиков.
- •33.Ферромагнетики.
- •34.Закон электромагнитной индукции. Правило Ленца.
- •35. Взаимная индукция. Самоиндукция.
- •36. Ток замыкания цепи
- •37.Ток размыкания цепи.
- •38.Физический смысл интегральной формы уравнений Максвелла.
- •39.Ток смещения.
- •40. Скорость электромагнитной волны.
- •41.Капиллярные явления.
- •42. Влияние поверхностных эффектов на конденсацию пара и испарение жидкости.
- •43. Ламинарное и турбулентное течение. Линии и трубки тока. Уравнение непрерывности.
- •44. Уравнение Бернулли.
- •46. Число Рейнольдса. Метод подобия.
- •47Деформация твердых тел. Закон Гука. Модуль Юнга.
- •1. Закон Кулона. Электрическое поле. Принцип суперпозиции.
- •3. Теорема Остроградского-Гаусса для напряженности электростатического поля.
- •4. Теорема Ирншоу.
- •5. Полярные и неполярные диэлектрики. Электрический диполь. Дипольный момент.
- •6. Вектор поляризации. Его связь с поверхностной плотностью связанных зарядов.
- •7. Поле бесконечной равномерно заряженной плоскости. Напряженность поля в диэлектрике. Относительная диэлектрическая проницаемость.
- •8. Электрическая индукция. Теорема Остроградского-Гаусса для электрической индукции. Поведение нормальной составляющей поля на границе раздела диэлектриков.
- •9. Поле бесконечной равномерно заряженной нити.
- •10. Поле равномерно заряженного шара.
- •11. Потенциал электростатического поля. Его связь с напряженностью. Поведение тангенциальных составляющих поля на границе раздела диэлектриков
- •12. Потенциал поля точечного заряда и поля электрического диполя.
- •Проводник в электрическом поле. Связь между поверхностной плотностью заряда и полем вблизи поверхности.
- •Электроемкость проводника. Электроемкость конденсатора.
- •Потенциальная энергия системы зарядов. Энергия конденсатора. Плотность энергии электрического поля.
- •16. Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.
- •17. Законы Ома.
- •18. Закон Ома для замкнутой цепи. Правила Кирхгофа.
- •19. Мощность электрического тока это работа, совершаемая током за единицу времени.
- •20. Квазистационарные токи. Заряд и разряд конденсатора.
- •Сила Лоренца. Магнитное поле. Относительный характер электрических и магнитных компонент электромагнитного поля.
- •22.Принцип супер¬позиции магнитных полей.
- •23.Закон Био-Савара-Лапласа. Магнитное поле кругового витка на его оси.
- •24.Магнитное поле бесконечного прямолинейного проводника с током
- •25.Теорема Остроградского-Гаусса для магнитного поля. Соленоидальный характер магнитного поля. Закон полного тока.
- •26.Поле соленоида.
- •27. Закон Ампера. Сила Ампера.
- •28.Работа по перемещению проводника с током в магнитном поле
- •29.Замкнутый контур в магнитном поле.
- •30 Энергия магнитного поля соленоида. Плотность энергии магнитного поля
- •31.Напряженность магнитного поля. Диамагнетики и парамагнетики.
- •32 Условия на границе раздела магнетиков.
- •33 Феромагнетики
- •34 Закон электромагнитной индукции. Правило Ленца.
- •35.Взаимная индукция. Самоиндукция.
- •Ток замыкания цепи.
- •Ток размыкания цепи.
- •Физический смысл интегральной формы уравнений Максвелла.
- •Ток смещения.
- •Скорость электромагнитной волны.
- •Поток вектора через бесконечно малую поверхность.
- •Циркуляция вектора по бесконечно малому контуру.
- •Уравнения Максвелла в дифференциальной форме.
Закон сохранения импульса и его связь с однородностью пространства.
Импульсы замкнутой системы остаются неизменными, т.е. не изменяются с течением времени. Замкнутой называется система на которую не действует влияние силы или они скомпенсированы. Другой закон сохранения возникает в связи с однородностью пространства. В силу этой однородности механические свойства замкнутой системы не меняются при любом параллельном переносе системы как целого в пространстве. В соответствии с этим рассмотрим бесконечно малый перенос на отрезок ε и потребуем, чтобы функция Лагранжа осталась неизменной.
Абсолютно неупругий удар.
Удар называется не упругим если тела после удара не восстанавливают свою форму и размеры. При этом импульс сохраняется, а механическая энергия – нет. В физике ударом называют такое взаимодействие тел, при котором их скорости изменяются за очень короткий промежуток времени.
После взаимодействия тела движутся либо как одно целое, либо останавливается, т.к. энергия скалярная, то энергия импульса до взаимодействия равна сумме энергии тела.
Абсолютно упругий удар.
Удар называют упругим, если тела полностью восстанавливаются после прекращения внешнего воздействия. В физике ударом называют такое взаимодействие тел, при котором их скорости изменяются за очень короткий промежуток времени.
Момент импульса и закон его сохранения.
Моментом энергии твердого тела относительно неподвижной оси называется сумма произведения материальных точек на квадрат их расстояния до рассматриваемой оси.
[I]=кг
Моменту инерции характерны инертные свойства тела при вращательном движении. Моментом импульса называют векторную величину
;
Закон сохранения момента импульса.
Если моменты всех сил на точку =0,то момент импульса не меняется.
[M]=nM
i – плечо силы или кратчайшее расстояние от линии действия силы до оси вращения.
Связь закона сохранения момента импульса с изотропностью пространства.
Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем. Закон сохранения момента импульса есть проявление изотропности пространства.
Кинетическая энергия вращающегося тела. Расчет момента инерции полого цилиндра.
Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек па которые это тело можно разбить:
Если
тело вращается вокруг неподвижной оси
с угловой скоростью
,
то
линейная скорость i-ой точки равна
,
где
,
- расстояние от этой точки до оси вращения.
Следовательно.
|
|
где
-
момент инерции тела относительно оси
вращения.
В
общем случае движение твердого тела
можно представить в виде суммы двух
движений - поступательного со скоростью,
равной скорости
центра
инерции тела, и вращения с угловой
скоростью
вокруг
мгновенной оси, проходящей через центр
инерции. При этом выражение для
кинетической энергии тела преобразуется
к виду
|
|
где
-
момент инерции тела относительно
мгновенной оси вращения, проходящей
через центр инерции.
Расчет момента инерции полого цилиндра.
Пусть имеется однородное кольцо с внешним радиусом R, внутренним радиусом R1, толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr. Масса и момент инерции тонкого кольца радиуса r составит
Момент инерции толстого кольца найдём как интеграл
Поскольку объём и масса кольца равны
получаем окончательную формулу для момента инерции кольца