
- •Предмет физики. Предмет механики. Физические модели. Материальная точка. Абсолютно твердое тело. Системы отсчета.
- •Координатное и векторное описание положения частицы. Связь между ними
- •Скорость и ускорение материальной точки.
- •Равнопеременное движение.
- •Нормальное, тангенциальное и полное ускорения. Радиус кривизны траектории.
- •Поступательное и вращательное движение. Кинематика поступательного движения. Связь угловых и линейных характеристик движения.
- •Плоское движение
- •Механический принцип относительности. Инерциальные системы отсчета. Первый закон Ньютона.
- •Преобразования Галилея. Закон сложения скоростей Галилея.
- •Второй закон Ньютона. Сила. Импульс.
- •11.Принцип суперпозиции сил. Третий закон Ньютона.
- •12. Силы инерции. Принцип эквивалентности.
- •Измерения. Системы единиц. Внесистемные единицы. Размерности физических величин.
- •Работа и энергия. Мощность.
- •Консервативные силы. Потенциальные поля.
- •Потенциальная энергия. Связь силы и потенциальной энергии.
- •Силы в механике. Упругая сила.
- •Сила гравитационного притяжения. Однородная сила тяжести.
- •Сухое трение. Вязкое трение.
- •Закон сохранения механической энергии. Границы одномерного движения.
- •Закон сохранения импульса и его связь с однородностью пространства.
- •Абсолютно неупругий удар.
- •Абсолютно упругий удар.
- •Момент импульса и закон его сохранения.
- •Связь закона сохранения момента импульса с изотропностью пространства.
- •Кинетическая энергия вращающегося тела. Расчет момента инерции полого цилиндра.
- •Теорема Штейнера.
- •Динамика вращательного движения системы материальных точек относительно неподвижной оси.
- •Кинетическая энергия плоского движение твердого тела.
- •Равнодействующая сила. Центр тяжести.
- •Лоренцево замедление времени.
- •Лоренцево сокращение длин.
- •Преобразования Лоренца
- •Интервал и его инвариантность.
- •Релятивистский импульс. Основное уравнение релятивисткой динамики.
- •Кинетическая энергия релятивистской частицы. Взаимосвязь массы и энергии. Энергия покоя.
- •2 Тема.
- •1. Потенциальная энергия взаимодействия молекул. Модель идеального газа.
- •2. Жидкость. Кристаллическая решетка.
- •3. Молярная масса и число Авогадро.
- •4. Статистические ансамбли. Средние значения и среднеквадратичные отклонения.
- •6. Идеальный газ. Давление идеального газа.
- •8. Изопроцессы в идеальном газе.
- •9. Закон равнораспределения энергии по степеням свободы молекул в газе.
- •10. Внутренняя энергия. Внутренняя энергия идеального газа.
- •11. Механическая работа в тепловых процессах.
- •12. Первое начало термодинамики
- •1 3. Круговые процессы и тепловые двигатели. К.П.Д. Теплового двигателя.
- •14. Теплоемкость. Теплоемкость при постоянном давлении и теплоемкость при постоянном объеме. Уравнение Майера.
- •15. Работа в адиабатном процессе
- •16. Уравнение Пуассона.
- •17. Энтропия и ее статистический смысл.
- •18. Энтропия идеального газа.
- •19. Изменение энтропии в квазиравновесных процессах.
- •20. К.П.Д. Идеального цикла Карно.
- •21. Второе начало термодинамики (закон возрастания энтропии). Теорема Нернста.
- •22.Распределение Больцмана частиц в потенциальном поле.
- •23. Барометрическая формула.
- •24. Распределение Максвелла по скоростям.
- •25. Распределение Максвелла по модулю скорости.
- •26.Опыт Штерна.
- •27. Явления переноса. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •28. Средняя длина свободного пробега молекулы в газе
- •29.Коэффициент диффузии в газе.
- •30. Коэффициент теплопроводности газов
- •31.Напряженность магнитного поля. Диамагнетики и парамагнетики.
- •32.Условия на границе раздела магнетиков.
- •33.Ферромагнетики.
- •34.Закон электромагнитной индукции. Правило Ленца.
- •35. Взаимная индукция. Самоиндукция.
- •36. Ток замыкания цепи
- •37.Ток размыкания цепи.
- •38.Физический смысл интегральной формы уравнений Максвелла.
- •39.Ток смещения.
- •40. Скорость электромагнитной волны.
- •41.Капиллярные явления.
- •42. Влияние поверхностных эффектов на конденсацию пара и испарение жидкости.
- •43. Ламинарное и турбулентное течение. Линии и трубки тока. Уравнение непрерывности.
- •44. Уравнение Бернулли.
- •46. Число Рейнольдса. Метод подобия.
- •47Деформация твердых тел. Закон Гука. Модуль Юнга.
- •1. Закон Кулона. Электрическое поле. Принцип суперпозиции.
- •3. Теорема Остроградского-Гаусса для напряженности электростатического поля.
- •4. Теорема Ирншоу.
- •5. Полярные и неполярные диэлектрики. Электрический диполь. Дипольный момент.
- •6. Вектор поляризации. Его связь с поверхностной плотностью связанных зарядов.
- •7. Поле бесконечной равномерно заряженной плоскости. Напряженность поля в диэлектрике. Относительная диэлектрическая проницаемость.
- •8. Электрическая индукция. Теорема Остроградского-Гаусса для электрической индукции. Поведение нормальной составляющей поля на границе раздела диэлектриков.
- •9. Поле бесконечной равномерно заряженной нити.
- •10. Поле равномерно заряженного шара.
- •11. Потенциал электростатического поля. Его связь с напряженностью. Поведение тангенциальных составляющих поля на границе раздела диэлектриков
- •12. Потенциал поля точечного заряда и поля электрического диполя.
- •Проводник в электрическом поле. Связь между поверхностной плотностью заряда и полем вблизи поверхности.
- •Электроемкость проводника. Электроемкость конденсатора.
- •Потенциальная энергия системы зарядов. Энергия конденсатора. Плотность энергии электрического поля.
- •16. Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.
- •17. Законы Ома.
- •18. Закон Ома для замкнутой цепи. Правила Кирхгофа.
- •19. Мощность электрического тока это работа, совершаемая током за единицу времени.
- •20. Квазистационарные токи. Заряд и разряд конденсатора.
- •Сила Лоренца. Магнитное поле. Относительный характер электрических и магнитных компонент электромагнитного поля.
- •22.Принцип супер¬позиции магнитных полей.
- •23.Закон Био-Савара-Лапласа. Магнитное поле кругового витка на его оси.
- •24.Магнитное поле бесконечного прямолинейного проводника с током
- •25.Теорема Остроградского-Гаусса для магнитного поля. Соленоидальный характер магнитного поля. Закон полного тока.
- •26.Поле соленоида.
- •27. Закон Ампера. Сила Ампера.
- •28.Работа по перемещению проводника с током в магнитном поле
- •29.Замкнутый контур в магнитном поле.
- •30 Энергия магнитного поля соленоида. Плотность энергии магнитного поля
- •31.Напряженность магнитного поля. Диамагнетики и парамагнетики.
- •32 Условия на границе раздела магнетиков.
- •33 Феромагнетики
- •34 Закон электромагнитной индукции. Правило Ленца.
- •35.Взаимная индукция. Самоиндукция.
- •Ток замыкания цепи.
- •Ток размыкания цепи.
- •Физический смысл интегральной формы уравнений Максвелла.
- •Ток смещения.
- •Скорость электромагнитной волны.
- •Поток вектора через бесконечно малую поверхность.
- •Циркуляция вектора по бесконечно малому контуру.
- •Уравнения Максвелла в дифференциальной форме.
Ток смещения.
Ток смещения или абсорбционный ток — величина, прямо пропорциональная быстроте изменения электрической индукции. Это понятие используется в классической электродинамике. Введено Дж. К. Максвеллом при построении теории электромагнитного поля.
Введение тока смещения позволило устранить противоречие в формуле Ампера для циркуляции магнитного поля, которая после добавления туда тока смещения стала непротиворечивой и составила последнее уравнение, позволившее корректно замкнуть систему уравнений (классической) электродинамики.
Строго говоря, ток смещения не является электрическим током, но измеряется в тех же единицах, что и электрический ток.
В
вакууме, а также в любом веществе, в
котором можно пренебречь поляризацией
либо скоростью её изменения, током
смещения JD (с
точностью до универсального постоянного
коэффициента) называется поток
вектора быстроты изменения электрического
поля
через
некоторую поверхность
s.
В диэлектриках (и во всех веществах, где нельзя пренебречь изменением поляризации) используется следующее определение:
где D — вектор электрической индукции (исторически вектор D назывался электрическим смещением, отсюда и название «ток смещения»)
Соответственно, плотностью тока смещения в вакууме называется величина:
а в диэлектриках — величина:
Скорость электромагнитной волны.
Скорость электромагнитной волны в вакууме
Скорость электромагнитной волны
В эту формулу входят фундаментальные константы ε0 и μ0, поэтому разумно вычислить величину
Так как ε0 = 8,85 · 1012 Кл2/(м2 · Н) и μ0 = 2,56 · 10-7 Н/А2, то, подставив эти значения в формулу (4.8), получаем с = 3 · 108 м/с.
Таким образом, с в формуле (4.8) есть не что иное, как скорость света в вакууме, и формулу (4.7) можно переписать в виде
где величина
называется абсолютным показателем преломления, или просто показателем преломления вещества. Осталось найти способ, позволяющий измерить скорость электромагнитной волны в разных средах.
Для этого можно измерить длину волны λ и, зная частоту генератора ν, вычислить скорость электромагнитной волны
υ = λ/T = λν (4.11)
Для измерения длины волны используем интерференцию волн.Подобный опыт мы уже делали на прошлом уроке, когда параллельно приёмному диполю располагали проводящий стержень. Вместо стержня возьмём металлический лист и расположим его параллельно излучающему диполю. Тогда на приёмном диполе будут интерферировать две электромагнитные волны: идущая непосредственно от излучающего диполя и отражённая от листа.Перемещая отражатель поступательно в направлении распространения электромагнитной волны, отметим два таких его положения, при которых яркость лампы приёмного диполя минимальна. Вспомните опыты по интерференции звука и в проделанном сейчас эксперименте найдите длину электромагнитной волны.
Расстояние между двумя положениями отражателя, при которых лампа приёмного диполя гаснет, равно половине длины электромагнитной волны. Измерения показывают, что эта величина составляет 35 см, значит, длина волны излучения генератора λ = 0,7 м. Так как частота генератора ν = 430 МГц = 4,3 · 108Гц, то скорость элетромагнитной волны в воздухе υ = λν = 3 · 108 м/с, такая же, как в вакууме! Поэтому показатель преломления воздуха n практически равен 1.
4.5. Скорость электромагнитной волны в веществе
Обратите внимание, что длины излучающего и приёмного диполей равны половине длины электромагнитного излучения. Случайно ли это? Чтобы получить ответ, нужно попробовать изменить длины диполей и посмотреть, что из этого получится.
Диполем с лампой, длина которого может регулироваться, замыкаем клеммы генератора, при этом его лампа ярко светится, а лампа приёмного диполя не горит. Постепенно увеличиваем длину диполя, соединённого с генератором. При определённой длине диполя, подключённого к генератору, яркость его лампы становится минимальной, а яркость лампы приёмного диполя – максимальной. Опыт очень убедительно свидетельствует, что соединённый с генератором диполь излучает электромагнитную волну, и это приводит к уменьшению энергии электрического тока в нём. Измерения показывают, что длина диполя, при которой его излучение максимально, равна 35 см, т.е. половине длины электромагнитной волны.
Снабдим генератор полуволновым излучающим диполем и будем изменять длину приёмного диполя. Сделайте вывод из этого опыта.При изменении длины приёмного диполя свечение его лампы максимально, когда она также равна половине длины электромагнитной волны. Значит, наиболее эффективны полуволновые излучающий и приёмный диполи. Наверное, в этих опытах наблюдается резонанс... В самом деле – резонанс, ведь всякий диполь – это открытый колебательный контур! Подумайте, как убедиться, что скорость электромагнитной волны в веществе отличается от скорости света в вакууме? Подскажу, что в качестве исследуемого вещества удобнее всего взять воду, поскольку её диэлектрическая проницаемость велика.
Так
как магнитная проницаемость воды
практически равна 1, то, согласно формуле
(4.9), скорость электромагнитной волны в
воде
Тогда,
по формуле (4.11), длина волны λ = υ/ν =
7,7 см. Выходит, что в воде нужно использовать
полуволновые диполи длиной примерно
3,8 см. Пусть излучающий диполь находится
в воздухе. Вблизи него я помещаю
пластиковый сосуд с водой и ввожу в воду
короткий диполь с лампой, длина которого
4 см. Вы видите, что лампа загорается.Перемещаю
за приёмным диполем металлическую
полоску, и вы наблюдаете, что лампа
приёмного диполя периодически гаснет
и загорается. Опыт подтверждает
предположение: действительно длина и
скорость распространения электромагнитной
волны в воде в
раз
меньше, чем в воздухе. Но ведь известно,
что показатель преломления воды равен
не 9, а 1,33. Дело в том, что существует явление
дисперсии:
скорость электромагнитной волны в
веществе зависит от её частоты. Частота
видимого света порядка 1014 Гц,
на такой частоте диэлектрическая
проницаемость воды равна не 81, а 1,77.