
- •Предмет физики. Предмет механики. Физические модели. Материальная точка. Абсолютно твердое тело. Системы отсчета.
- •Координатное и векторное описание положения частицы. Связь между ними
- •Скорость и ускорение материальной точки.
- •Равнопеременное движение.
- •Нормальное, тангенциальное и полное ускорения. Радиус кривизны траектории.
- •Поступательное и вращательное движение. Кинематика поступательного движения. Связь угловых и линейных характеристик движения.
- •Плоское движение
- •Механический принцип относительности. Инерциальные системы отсчета. Первый закон Ньютона.
- •Преобразования Галилея. Закон сложения скоростей Галилея.
- •Второй закон Ньютона. Сила. Импульс.
- •11.Принцип суперпозиции сил. Третий закон Ньютона.
- •12. Силы инерции. Принцип эквивалентности.
- •Измерения. Системы единиц. Внесистемные единицы. Размерности физических величин.
- •Работа и энергия. Мощность.
- •Консервативные силы. Потенциальные поля.
- •Потенциальная энергия. Связь силы и потенциальной энергии.
- •Силы в механике. Упругая сила.
- •Сила гравитационного притяжения. Однородная сила тяжести.
- •Сухое трение. Вязкое трение.
- •Закон сохранения механической энергии. Границы одномерного движения.
- •Закон сохранения импульса и его связь с однородностью пространства.
- •Абсолютно неупругий удар.
- •Абсолютно упругий удар.
- •Момент импульса и закон его сохранения.
- •Связь закона сохранения момента импульса с изотропностью пространства.
- •Кинетическая энергия вращающегося тела. Расчет момента инерции полого цилиндра.
- •Теорема Штейнера.
- •Динамика вращательного движения системы материальных точек относительно неподвижной оси.
- •Кинетическая энергия плоского движение твердого тела.
- •Равнодействующая сила. Центр тяжести.
- •Лоренцево замедление времени.
- •Лоренцево сокращение длин.
- •Преобразования Лоренца
- •Интервал и его инвариантность.
- •Релятивистский импульс. Основное уравнение релятивисткой динамики.
- •Кинетическая энергия релятивистской частицы. Взаимосвязь массы и энергии. Энергия покоя.
- •2 Тема.
- •1. Потенциальная энергия взаимодействия молекул. Модель идеального газа.
- •2. Жидкость. Кристаллическая решетка.
- •3. Молярная масса и число Авогадро.
- •4. Статистические ансамбли. Средние значения и среднеквадратичные отклонения.
- •6. Идеальный газ. Давление идеального газа.
- •8. Изопроцессы в идеальном газе.
- •9. Закон равнораспределения энергии по степеням свободы молекул в газе.
- •10. Внутренняя энергия. Внутренняя энергия идеального газа.
- •11. Механическая работа в тепловых процессах.
- •12. Первое начало термодинамики
- •1 3. Круговые процессы и тепловые двигатели. К.П.Д. Теплового двигателя.
- •14. Теплоемкость. Теплоемкость при постоянном давлении и теплоемкость при постоянном объеме. Уравнение Майера.
- •15. Работа в адиабатном процессе
- •16. Уравнение Пуассона.
- •17. Энтропия и ее статистический смысл.
- •18. Энтропия идеального газа.
- •19. Изменение энтропии в квазиравновесных процессах.
- •20. К.П.Д. Идеального цикла Карно.
- •21. Второе начало термодинамики (закон возрастания энтропии). Теорема Нернста.
- •22.Распределение Больцмана частиц в потенциальном поле.
- •23. Барометрическая формула.
- •24. Распределение Максвелла по скоростям.
- •25. Распределение Максвелла по модулю скорости.
- •26.Опыт Штерна.
- •27. Явления переноса. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •28. Средняя длина свободного пробега молекулы в газе
- •29.Коэффициент диффузии в газе.
- •30. Коэффициент теплопроводности газов
- •31.Напряженность магнитного поля. Диамагнетики и парамагнетики.
- •32.Условия на границе раздела магнетиков.
- •33.Ферромагнетики.
- •34.Закон электромагнитной индукции. Правило Ленца.
- •35. Взаимная индукция. Самоиндукция.
- •36. Ток замыкания цепи
- •37.Ток размыкания цепи.
- •38.Физический смысл интегральной формы уравнений Максвелла.
- •39.Ток смещения.
- •40. Скорость электромагнитной волны.
- •41.Капиллярные явления.
- •42. Влияние поверхностных эффектов на конденсацию пара и испарение жидкости.
- •43. Ламинарное и турбулентное течение. Линии и трубки тока. Уравнение непрерывности.
- •44. Уравнение Бернулли.
- •46. Число Рейнольдса. Метод подобия.
- •47Деформация твердых тел. Закон Гука. Модуль Юнга.
- •1. Закон Кулона. Электрическое поле. Принцип суперпозиции.
- •3. Теорема Остроградского-Гаусса для напряженности электростатического поля.
- •4. Теорема Ирншоу.
- •5. Полярные и неполярные диэлектрики. Электрический диполь. Дипольный момент.
- •6. Вектор поляризации. Его связь с поверхностной плотностью связанных зарядов.
- •7. Поле бесконечной равномерно заряженной плоскости. Напряженность поля в диэлектрике. Относительная диэлектрическая проницаемость.
- •8. Электрическая индукция. Теорема Остроградского-Гаусса для электрической индукции. Поведение нормальной составляющей поля на границе раздела диэлектриков.
- •9. Поле бесконечной равномерно заряженной нити.
- •10. Поле равномерно заряженного шара.
- •11. Потенциал электростатического поля. Его связь с напряженностью. Поведение тангенциальных составляющих поля на границе раздела диэлектриков
- •12. Потенциал поля точечного заряда и поля электрического диполя.
- •Проводник в электрическом поле. Связь между поверхностной плотностью заряда и полем вблизи поверхности.
- •Электроемкость проводника. Электроемкость конденсатора.
- •Потенциальная энергия системы зарядов. Энергия конденсатора. Плотность энергии электрического поля.
- •16. Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.
- •17. Законы Ома.
- •18. Закон Ома для замкнутой цепи. Правила Кирхгофа.
- •19. Мощность электрического тока это работа, совершаемая током за единицу времени.
- •20. Квазистационарные токи. Заряд и разряд конденсатора.
- •Сила Лоренца. Магнитное поле. Относительный характер электрических и магнитных компонент электромагнитного поля.
- •22.Принцип супер¬позиции магнитных полей.
- •23.Закон Био-Савара-Лапласа. Магнитное поле кругового витка на его оси.
- •24.Магнитное поле бесконечного прямолинейного проводника с током
- •25.Теорема Остроградского-Гаусса для магнитного поля. Соленоидальный характер магнитного поля. Закон полного тока.
- •26.Поле соленоида.
- •27. Закон Ампера. Сила Ампера.
- •28.Работа по перемещению проводника с током в магнитном поле
- •29.Замкнутый контур в магнитном поле.
- •30 Энергия магнитного поля соленоида. Плотность энергии магнитного поля
- •31.Напряженность магнитного поля. Диамагнетики и парамагнетики.
- •32 Условия на границе раздела магнетиков.
- •33 Феромагнетики
- •34 Закон электромагнитной индукции. Правило Ленца.
- •35.Взаимная индукция. Самоиндукция.
- •Ток замыкания цепи.
- •Ток размыкания цепи.
- •Физический смысл интегральной формы уравнений Максвелла.
- •Ток смещения.
- •Скорость электромагнитной волны.
- •Поток вектора через бесконечно малую поверхность.
- •Циркуляция вектора по бесконечно малому контуру.
- •Уравнения Максвелла в дифференциальной форме.
17. Законы Ома.
Закон Ома для однородного участка цепи.
Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении.
где U - напряжение на участке, R - сопротивление участка.
Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.
где φ1 - φ2 + ε = U напряжение на заданном участке цепи, R - электрическое сопротивление заданного участка цепи.
Закон Ома для полной цепи.
Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.
где R - электрическое сопротивление внешнего участка цепи, r - электрическое сопротивление внутреннего участка цепи.
Закон Ома в интегральной форме для однородного участка цепи (не содержащего ЭДС)
|
|
(7.6.1) |
|
Для однородного линейного проводника выразим R через ρ:
|
|
(7.6.2) |
|
ρ – удельное объемное сопротивление; [ρ] = [Ом·м].
Найдем
связь между
и
в
бесконечно малом объеме проводника
– закон Ома в дифференциальной форме.
В изотропном проводнике (в данном случае с постоянным сопротивлением) носители зарядов движутся в направлении действия силы, т.е. вектор плотности тока и вектор напряженности поля коллинеарны (рис. 7.6).
Рис. 7.6
Исходя из закона Ома (7.6.1), имеем:
А
мы знаем, что
или
.
Отсюда можно записать
|
|
(7.6.3) |
|
это запись закона Ома в дифференциальной форме.
Здесь
– удельная
электропроводность.
Размерность
σ – [
].
Плотность
тока можно выразить через заряд
электрона е, количество зарядов n и
дрейфовую скорость
:
.
Обозначим
,
тогда
;
|
|
(7.6.4) |
|
Теперь,
если удельную электропроводность σ
выразить через е, n и b:
то
вновь получим выражение закона
Ома в дифференциальной форме:
.
Электрическое напряжение между двумя точками электрической цепи или электрического поля, равно работе электрического поля по перемещению единичного положительного заряда из одной точки в другую. В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд; в этом случае Э. н. между двумя точками совпадает с разностью потенциалов между ними.
Если поле непотенциально, то напряжение зависит от того пути, по которому перемещается заряд между точками. Непотенциальные силы, называются сторонними, действуют внутри любого источника постоянного тока (генератора, аккумулятора, гальванического элемента и др.). Под напряжением на зажимах источника тока всегда понимают работу электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника; в этом случае Э. н. равно разности потенциалов на зажимах источника и определяется законом Ома: U = IR—E, где I — сила тока, R — внутреннее сопротивление источника, а E — его электродвижущая сила (эдс). При разомкнутой цепи (I = 0) напряжение по модулю равно эдс источника. Поэтому эдс источника часто определяют как Э. н. на его зажимах при разомкнутой цепи.
В случае переменного тока Э. н. обычно характеризуется действующим (эффективным) значением, которое представляет собой среднеквадратичное за период значение напряжения. Напряжение на зажимах источника переменного тока или катушки индуктивности измеряется работой электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника или катушки. Вихревое (непотенциальное) электрическое поле на этом пути практически отсутствует, и напряжение равно разности потенциалов.
Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.
Наименование и обозначение производной единицы СИ:
международное – volt, V
русское – вольт, В
Выражение через основные и производные единицы СИ:
1 V = 1 W / A