
- •Предмет физики. Предмет механики. Физические модели. Материальная точка. Абсолютно твердое тело. Системы отсчета.
- •Координатное и векторное описание положения частицы. Связь между ними
- •Скорость и ускорение материальной точки.
- •Равнопеременное движение.
- •Нормальное, тангенциальное и полное ускорения. Радиус кривизны траектории.
- •Поступательное и вращательное движение. Кинематика поступательного движения. Связь угловых и линейных характеристик движения.
- •Плоское движение
- •Механический принцип относительности. Инерциальные системы отсчета. Первый закон Ньютона.
- •Преобразования Галилея. Закон сложения скоростей Галилея.
- •Второй закон Ньютона. Сила. Импульс.
- •11.Принцип суперпозиции сил. Третий закон Ньютона.
- •12. Силы инерции. Принцип эквивалентности.
- •Измерения. Системы единиц. Внесистемные единицы. Размерности физических величин.
- •Работа и энергия. Мощность.
- •Консервативные силы. Потенциальные поля.
- •Потенциальная энергия. Связь силы и потенциальной энергии.
- •Силы в механике. Упругая сила.
- •Сила гравитационного притяжения. Однородная сила тяжести.
- •Сухое трение. Вязкое трение.
- •Закон сохранения механической энергии. Границы одномерного движения.
- •Закон сохранения импульса и его связь с однородностью пространства.
- •Абсолютно неупругий удар.
- •Абсолютно упругий удар.
- •Момент импульса и закон его сохранения.
- •Связь закона сохранения момента импульса с изотропностью пространства.
- •Кинетическая энергия вращающегося тела. Расчет момента инерции полого цилиндра.
- •Теорема Штейнера.
- •Динамика вращательного движения системы материальных точек относительно неподвижной оси.
- •Кинетическая энергия плоского движение твердого тела.
- •Равнодействующая сила. Центр тяжести.
- •Лоренцево замедление времени.
- •Лоренцево сокращение длин.
- •Преобразования Лоренца
- •Интервал и его инвариантность.
- •Релятивистский импульс. Основное уравнение релятивисткой динамики.
- •Кинетическая энергия релятивистской частицы. Взаимосвязь массы и энергии. Энергия покоя.
- •2 Тема.
- •1. Потенциальная энергия взаимодействия молекул. Модель идеального газа.
- •2. Жидкость. Кристаллическая решетка.
- •3. Молярная масса и число Авогадро.
- •4. Статистические ансамбли. Средние значения и среднеквадратичные отклонения.
- •6. Идеальный газ. Давление идеального газа.
- •8. Изопроцессы в идеальном газе.
- •9. Закон равнораспределения энергии по степеням свободы молекул в газе.
- •10. Внутренняя энергия. Внутренняя энергия идеального газа.
- •11. Механическая работа в тепловых процессах.
- •12. Первое начало термодинамики
- •1 3. Круговые процессы и тепловые двигатели. К.П.Д. Теплового двигателя.
- •14. Теплоемкость. Теплоемкость при постоянном давлении и теплоемкость при постоянном объеме. Уравнение Майера.
- •15. Работа в адиабатном процессе
- •16. Уравнение Пуассона.
- •17. Энтропия и ее статистический смысл.
- •18. Энтропия идеального газа.
- •19. Изменение энтропии в квазиравновесных процессах.
- •20. К.П.Д. Идеального цикла Карно.
- •21. Второе начало термодинамики (закон возрастания энтропии). Теорема Нернста.
- •22.Распределение Больцмана частиц в потенциальном поле.
- •23. Барометрическая формула.
- •24. Распределение Максвелла по скоростям.
- •25. Распределение Максвелла по модулю скорости.
- •26.Опыт Штерна.
- •27. Явления переноса. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •28. Средняя длина свободного пробега молекулы в газе
- •29.Коэффициент диффузии в газе.
- •30. Коэффициент теплопроводности газов
- •31.Напряженность магнитного поля. Диамагнетики и парамагнетики.
- •32.Условия на границе раздела магнетиков.
- •33.Ферромагнетики.
- •34.Закон электромагнитной индукции. Правило Ленца.
- •35. Взаимная индукция. Самоиндукция.
- •36. Ток замыкания цепи
- •37.Ток размыкания цепи.
- •38.Физический смысл интегральной формы уравнений Максвелла.
- •39.Ток смещения.
- •40. Скорость электромагнитной волны.
- •41.Капиллярные явления.
- •42. Влияние поверхностных эффектов на конденсацию пара и испарение жидкости.
- •43. Ламинарное и турбулентное течение. Линии и трубки тока. Уравнение непрерывности.
- •44. Уравнение Бернулли.
- •46. Число Рейнольдса. Метод подобия.
- •47Деформация твердых тел. Закон Гука. Модуль Юнга.
- •1. Закон Кулона. Электрическое поле. Принцип суперпозиции.
- •3. Теорема Остроградского-Гаусса для напряженности электростатического поля.
- •4. Теорема Ирншоу.
- •5. Полярные и неполярные диэлектрики. Электрический диполь. Дипольный момент.
- •6. Вектор поляризации. Его связь с поверхностной плотностью связанных зарядов.
- •7. Поле бесконечной равномерно заряженной плоскости. Напряженность поля в диэлектрике. Относительная диэлектрическая проницаемость.
- •8. Электрическая индукция. Теорема Остроградского-Гаусса для электрической индукции. Поведение нормальной составляющей поля на границе раздела диэлектриков.
- •9. Поле бесконечной равномерно заряженной нити.
- •10. Поле равномерно заряженного шара.
- •11. Потенциал электростатического поля. Его связь с напряженностью. Поведение тангенциальных составляющих поля на границе раздела диэлектриков
- •12. Потенциал поля точечного заряда и поля электрического диполя.
- •Проводник в электрическом поле. Связь между поверхностной плотностью заряда и полем вблизи поверхности.
- •Электроемкость проводника. Электроемкость конденсатора.
- •Потенциальная энергия системы зарядов. Энергия конденсатора. Плотность энергии электрического поля.
- •16. Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.
- •17. Законы Ома.
- •18. Закон Ома для замкнутой цепи. Правила Кирхгофа.
- •19. Мощность электрического тока это работа, совершаемая током за единицу времени.
- •20. Квазистационарные токи. Заряд и разряд конденсатора.
- •Сила Лоренца. Магнитное поле. Относительный характер электрических и магнитных компонент электромагнитного поля.
- •22.Принцип супер¬позиции магнитных полей.
- •23.Закон Био-Савара-Лапласа. Магнитное поле кругового витка на его оси.
- •24.Магнитное поле бесконечного прямолинейного проводника с током
- •25.Теорема Остроградского-Гаусса для магнитного поля. Соленоидальный характер магнитного поля. Закон полного тока.
- •26.Поле соленоида.
- •27. Закон Ампера. Сила Ампера.
- •28.Работа по перемещению проводника с током в магнитном поле
- •29.Замкнутый контур в магнитном поле.
- •30 Энергия магнитного поля соленоида. Плотность энергии магнитного поля
- •31.Напряженность магнитного поля. Диамагнетики и парамагнетики.
- •32 Условия на границе раздела магнетиков.
- •33 Феромагнетики
- •34 Закон электромагнитной индукции. Правило Ленца.
- •35.Взаимная индукция. Самоиндукция.
- •Ток замыкания цепи.
- •Ток размыкания цепи.
- •Физический смысл интегральной формы уравнений Максвелла.
- •Ток смещения.
- •Скорость электромагнитной волны.
- •Поток вектора через бесконечно малую поверхность.
- •Циркуляция вектора по бесконечно малому контуру.
- •Уравнения Максвелла в дифференциальной форме.
Кинетическая энергия релятивистской частицы. Взаимосвязь массы и энергии. Энергия покоя.
Найдем
кинетическую энергию релятивистской
частицы. Раньше (§ 12) было показано, что
приращение кинетической энергии
материальной точки на элементарном
перемещении равно работе силы на
этом перемещении:
(40.1)
Учитывая,
что dr
= v
dt,
и подставив в (40.1) выражение (39.2), получаем
Преобразовав данное выражение с учетом того, что vdv = vdv, и формулы (39.1), придем к выражению
(40.2)
т.
е. приращение кинетической энергии
частицы пропорционально приращению ее
массы.Так как кинетическая энергия
покоящейся частицы равна нулю, а ее
масса равна массе покоя m0,
то, проинтегрировав (40.2), получим
(40.3)
или кинетическая энергия релятивистской
частицы имеет вид
(40.4)
Выражение
(40.4) при скоростях v«c
переходит в классическое:
(разлагая
в ряд
при v<<c,
правомерно пренебречь членами второго
порядка малости).
А.
Эйнштейн обобщил положение (40.2),
предположив, что оно справедливо не
только для кинетической энергии частицы,
но и для полной энергии, а именно любое
изменение массы m
сопровождается изменением полной
энергии частицы,
(40.5)
Отсюда
А. Эйнштейн пришел к универсальной
зависимости между полной энергией тела
Е
и его массой т:
(40.6)
Уравнение
(40.6), равно как и (40.5), выражает фундаментальный
закон природы —
закон взаимосвязи (пропорциональности)
массы и энергии: полная энергия системы
равна произведению ее массы на квадрат
скорости света в вакууме. Отметим, что
в полную энергию Е
не входит потенциальная энергия тела
во внешнем силовом поле. Закон (40.6) можно,
учитывая выражение (40.3), записать в виде
откуда следует, что покоящееся тело (T=0) также обладает энергией
называемой энергией покоя. В классической механике энергия покоя Е0 не учитывается, считая, что при v=0 энергия покоящегося тела равна нулю.
В силу однородности времени (см. § 13) в релятивистской механике, как и в классической, выполняется закон сохранения энергии: полная энергия замкнутой системы сохраняется, т. е. не изменяется с течением времени.
Из
формул (40.6) и (39.4) найдем релятивистское
соотношение между полной энергией и
импульсом частицы:
(40.7)
Возвращаясь
к уравнению (40.6), отметим еще раз, что
оно имеет универсальный
характер.
Оно применимо ко воем формам энергии,
т. е. можно утверждать, что с энергией,
какой бы формы она ни была, связана
масса
(40.8)
и, наоборот, со всякой массой связана энергия (40.6).
Чтобы охарактеризовать прочность связи и устойчивость системы каких-либо частиц (например, атомного ядра как системы из протонов и нейтронов), вводят понятие энергии связи. Энергия связи системы равна работе, которую необходимо затратить, чтобы разложить эту систему на составные части (например, атомное ядро — на протоны и нейтроны). Энергия связи системы
(40.9)
где m0i — масса покоя i-й частицы в свободном состоянии; М0 — масса покоя системы, состоящей из п частиц.
Закон взаимосвязи (пропорциональности) массы и энергии блестяще подтвержден экспериментом о выделении энергии при протекании ядерных реакций. Он широко используется для расчета энергетических эффектов при ядерных реакциях и превращениях элементарных частиц.
Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи.
Основной вывод теории относительности сводится к тому, что пространство и время органически взаимосвязаны и образуют единую форму существования материи — пространство-время. Только поэтому пространственно-временной интервал между двумя событиями является абсолютным, в то время как пространственные и временны2е промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временны2х соотношений движущейся материи.