Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
207416_FC3B0_otvety_na_bilety_s_primerami_matan....doc
Скачиваний:
33
Добавлен:
26.04.2019
Размер:
2.84 Mб
Скачать

Свойства функций, непрерывных в точке

1. Если функции и непрерывны в точке , то их сумма , произведение и частное (при условии ) являются функциями, непрерывными в точке .

2. Если функция непрерывна в точке и , то существует такая окрестность точки , в которой .

Доказательство этого свойства основывается на том, что при малых приращениях аргумента можно получить как угодно малое приращение функции в окрестностях не изменится.

3. Если функция непрерывна в точке , а функция непрерывна в точке , то сложная функция непрерывна в точке . Доказательство состоит в том, что малому приращению аргумента соответствует как угодно малое приращение , приводящее в свою очередь к непрерывности функции к как угодно малому приращению .

Свойство можно записать: ,

Т.е. под знаком непрерывной функции можно переходить к пределу.

Определение. Функция называется непрерывной на промежутке , если она непрерывна в каждой точке этого промежутка. Все элементарные функции непрерывны в области их определения.

Точки разрыва функции

Определение. Если в какой-нибудь точке для функции не выполняется по крайней мере одно из условий непрерывности, то эта точка называется точкой разрыва функции.

Причем: 1) Если существуют конечные односторонние пределы функции, неравные друг другу: , то точка - точка разрыва I рода.

2) Если хотя бы один из односторонних пределов функции или равен бесконечности или не существует, то точка - точка разрыва II рода.

Свойства функций, непрерывных на отрезке

1. Если функция непрерывна на отрезке , то она ограничена на этом отрезке. (рис. 1.1)

2. Если функция непрерывна на отрезке , то она достигает на этом отрезке наименьшего значения и наибольшего значения (теорема Вейерштрасса). (рис. 1.2)

3 . Если функция непрерывна на отрезке и значения ее на концах отрезка и имеют противоположные знаки, то внутри отрезка найдется точка такая, что . (Теорема Больцано-Коши.)

П ример. Исследовать на непрерывность и найти точки разрыва функции . Установить характер разрыва.

Решение. При функция не определена, следовательно, функция в точке терпит разрыв: , а . Так как односторонние пределы бесконечны, то - точка разрыва второго рода.

21. Производная и ее геометрический смысл. Уравнение касательной к плоской кривой в заданной точке. Определение производной

Пусть на некотором промежутке Х определена функция y=f(x). Возьмем любую точку . Зададим аргументу х произвольное приращение ∆х ≠ 0 такое, что точка х+∆х также будет принадлежать Х. Функция получит приращение ∆у= f(x+∆х)− f(x).

Определение. Производной функции y=f(x) в точке х называется предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего к нулю (при условии, что этот предел существует).

Для обозначения производной функции y=f(x) в точке х используются символы у′(х) или f(x).

Итак, по определению, .

Если для некоторого значения х0 выполняется условие

или ,

т.е. пределы равны бесконечности, то говорят, что в точке х0 функция имеет бесконечную производную.

Если функция y=f(x) имеет конечную производную в каждой точке , то производную f(x) можно рассматривать как функцию х, также определенную на Х. Нахождение производной функции называется дифференцированием функции. Если функция в точке х имеет конечную производную, то функция называется дифференцируемой в этой точке. Функция, дифференцируемая во всех точках промежутка Х, называется дифференцируемой на этом промежутке.