Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
207416_FC3B0_otvety_na_bilety_s_primerami_matan....doc
Скачиваний:
33
Добавлен:
26.04.2019
Размер:
2.84 Mб
Скачать

Формула Ньютона-Лейбница.

Теорема. Пусть функция непрерывна на отрезке и - любая первообразная для на . Тогда определенный интеграл от функции на отрезке равен приращению первообразной на этом отрезке, т.е.

.

Значение определённого интеграла равно разности значений любой первообразной от подынтегральной функции, взятых при верхнем и нижнем пределах интеграла.

Другими словами, Значение определённого интеграла равно приращению любой первообразной от подынтегральной функции на интервале интегрирования.

Формула Ньютона-Лейбница позволяет находить определённый интеграл, обходя суммирование, при помощи первообразных функций.

40. Вычисление площадей плоских фигур с помощью определенного интеграла. Примеры.

1) Пусть функция неотрицательна и непрерывна на отрезке . Тогда исходя из геометрического смысла определенного интеграла площадь криволинейной трапеции, ограниченной кривой и прямыми (рис. 10.2) численно равна определенному интегралу:

. (11. 1)

Пример. Найти площадь фигуры, ограниченной линиями .

Решение.

1 способ. Из рисунка 11.1 видно, что искомая площадь равна: . Найдем координаты точки : ,

откуда для точки имеем , а для точки имеем .

; ;

2 способ. Если уравнение кривой записать в виде , то искомая площадь будет : .

2) Если функция неположительна и непрерывна на отрезке (рис. 11.2), то площадь

над кривой на отличается знаком от определенного интеграла:

т.е . (11. 2)

Пример. Найти площадь фигуры, ограниченной кривой и осью абсцисс.

Решение. На рис. 11.3 приведена плоская фигур, ограниченная параболой , вершина которой находится в точке , и осью . Парабола пересекает ось в точках с координатами и . Площадь этой фигуры, согласно формулы (11.2), равна

(ед. ).

3) Теорема. Если на отрезке заданы непрерывные функции и такие, что (рис. 11.4).

Тогда площадь фигуры, заключенной между кривыми и на отрезке , вычисляется по формуле:

. (11.3)

Пример. Найти площадь фигуры, ограниченной линиями:

.

Решение. Из рис. 11.5 видно, что искомая площадь находится по формуле (11.3), полагая .

.

41. Понятие о дифференциальном уравнении. Общее и частное решения. Задача Коши. Задача о построении математической модели демографического процесса.

Определение. Дифференциальным уравнением называется уравнение, связывающее искомую функцию одной или нескольких переменных, эти переменные и производные различных порядков искомой функции.

Определение. Если искомая функция зависит от одной переменной, то дифференциальное уравнение называется обыкновенным, если от нескольких переменных – то уравнением в частных производных.

Рассмотрим пример. Найти первообразную , если .

Решение. Раньше мы эту задачу решали с помощью неопределенного интеграла. Однако, ее можно рассматривать как задачу о нахождении функции , удовлетворяющей уравнению . .

В общем случае дифференциальное уравнение можно записать в виде:

. (12.1)

Например: .

Определение. Дифференциальное уравнение -го порядка называется разрешенным относительно старшей производной, если оно имеет вид:

, (12.2)

где - некоторая функция от переменной.

Определение. Решением дифференциального уравнения (12.1) называется такая функция , которая при подстановке ее в это уравнение обращает его в тождество.

Например, есть решение уравнения , т.к. .

Определение. Задача о нахождении решения некоторого дифференциального уравнения называется задачей интегрирования этого дифференциального уравнения. График решения дифференциального уравнения называется интегральной кривой.

Пример. Решить уравнение: .

Решение. Поскольку , то . Интегрируя левую и правую часть равенства, получим . Т.к. , то разделив переменные имеем . Интегрируя вторично, получим решение: , .

Проверка: .

Определение. Общим решением дифференциального уравнения (12.1) –го порядка называется такое его решение , которое является функцией переменных и произвольных постоянных .

Определение. Частным решением дифференциального уравнения называется решение, получаемое из общего решения при некоторых конкретных числовых значениях постоянных .

Например, для уравнения , где .