Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
207416_FC3B0_otvety_na_bilety_s_primerami_matan....doc
Скачиваний:
33
Добавлен:
26.04.2019
Размер:
2.84 Mб
Скачать

31. Функции нескольких переменных. Примеры. Частные производные (определение). Экстремум функции нескольких переменных и его необходимые условия. Основные понятия. Частные производные

Определение. Пусть имеется переменных величин и каждому набору их значений из некоторого множества соответствует одно вполне определенное значение переменной величины из множества . тогда говорят, что задана функция нескольких переменных .

Переменные называются независимыми переменными или аргументами, - зависимая переменная. Множество называется областью определения функции, множество - областью значений функции.

Функцию двух переменных будем обозначать как .

Определение. Графиком функции двух переменных называется множество точек трехмерного пространства ( ), аппликата которых связана с абсциссой и ординатой функциональным соотношением . График представляет собой некоторую поверхность в трехмерном пространстве.

Частные производные функции двух переменных

Определение. Число называется пределом функции двух переменных в точке , если для любого положительного числа существует положительное число , зависящее от , такое что для всех точек отстоящих от точки на расстоянии выполняется неравенство . Обозначение: .

Рассмотрим изменение функции при изменении только одной переменной, например, ; при этом другая переменная остается фиксированной

- частное приращение функции по переменной . Аналогично определяется частное приращение функции по переменной : .

Определение. Частной производной функции двух переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению рассматриваемой независимой переменной при стремлении последнего к нулю (если этот предел существует).

Пусть , тогда , .

Замечание. Так как частная производная функции 2-х переменных представляет собой обыкновенную производную функции одной переменной при постоянном значении другой переменной, то вычисляют частные производные по формулам и правилам дифференцирования функции одной переменной.

Пример. Найти частные производные функций а) , б) .

Решение. а) , . б) , .

Правило. Производная вычисляется при фиксированном значении , а производная вычисляется при фиксированном значении .

Определение. Пусть функция имеет частные производные и , которые также являются функциями двух переменных и . Частные производные от этих функций называются частными производными второго порядка от функции . Каждая производная первого порядка имеет две частные производные. Таким образом, мы получаем 4 частные производные второго порядка, которые обозначаются следующим образом:

,

,

,

.

Определение. и называются смешанными производными функции .

Экстремум функции двух переменных

Определение. Точка называется точкой максимума (минимума) функции , если существует окрестность точки такая, что для всех точек этой окрестности выполняется неравенство: , .

Теорема (необходимое условие экстремума). Пусть точка - есть точка экстремума дифференцируемой функции . Тогда частные производные и в этой точке равны нулю.

Терема (достаточное условие экстремума). Пусть функция :

а) определена в некоторой окрестности критической точки , в которой и ,

б) имеет в этой точке непрерывные частные производные второго порядка , , .

Тогда, если , то в точке функция имеет экстремум, причем если (или ) – максимум, если (или ) - минимум. В противном случае функция экстремума не имеет. Если , то вопрос о наличии экстремума остается открытым.

Схема исследования функции двух переменных на экстремум:

1) Найти частные производные функции и .

2) Решить систему уравнений и и найти критические точки функции.

3) Найти частные производные второго порядка, вычислить их значения в каждой критической точке и с помощью достаточного условия сделать вывод о наличии экстремумов.

  1. Найти экстремумы (экстремальные значения) функции.

Пример. Исследовать функцию на экстремум. Решение. Находим частные производные: , . Критические точки функции находим из системы уравнений: Решая систему, имеем одну критическую точку . Находим частные производные второго порядка: , , . Составляем . Так как и , то точка есть точка минимума.