Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
207416_FC3B0_otvety_na_bilety_s_primerami_matan....doc
Скачиваний:
33
Добавлен:
26.04.2019
Размер:
2.84 Mб
Скачать

35. Метод замены переменной в неопределенном интеграле и особенности применения этого метода при вычислении определенного интеграла.

Метод замены переменной (метод подстановки).

Одним из основных методов интегрирования является метод замены переменной (или метод подстановки), описываемый формулой:

(1)

Пусть заданный интеграл не может быть непосредственно преобразован к табличному интегралу. Введем новую переменную : . Тогда , , т.е. .

□ Найдем производные по переменной от левой и правой части; , . Т.к. , то эти производные равны, поэтому по следствию Лагранжа левая и правая части (1) отличаются на некоторую постоянную. Поскольку сами неопределенные интегралы определены с точностью до неопределенного постоянного слагаемого, то указанную постоянную в окончательной записи можно опустить.■

Формула показывает, что переходя к новой переменной, достаточно выполнить замену переменной в подынтегральном выражении. Удачная замена переменной позволяет упростить исходный интеграл, свести его к табличному.

Пример. Найти .

Решение. .

Замечание. Новую переменную можно не выписывать явно, а производить преобразования функции под знаком дифференциала (путем введения постоянных и переменных под знак дифференциала).

Теорема. Пусть некоторая первообразная для функции . Тогда если вместо аргумента подынтегральной функции и первообразной подставить выражение , то это приведет к появлению дополнительного множителя перед первообразной: , где и - некоторые числа, .

□ Перепишем в виде: . Но . Вынося постоянный множитель за знак интеграла и деля левую и правую части равенства на , приходим к .■

Алгоритм вычисления:

      1. Делаем замену.

      2. Дифференцируем замену .

      3. Под знаком интеграла переходим к новой переменной.

      4. Находим табличный интеграл.

      5. Возвращаемся к старой переменной.

36. Метод интегрирования по частям для случаев неопределенного и определенного интегралов (вывести формулу). Примеры.

Интегрирование - действие, обратное дифференцированию, то каждому правилу дифференцирования должно соответствовать некоторое правило интегрирования.

Пусть и - дифференцируемые функции от х. Имеем: , откуда .

Интегрируя обе части последнего равенства, получим: , или

.

Это и есть формула интегрирования по частям.

Интегрирование по частям состоит в том, что подынтегральное выражение представляется каким-либо образом в виде произведения двух множителей и (последний обязательно содержит ) и согласно формуле данное интегрирование заменяется двумя:

1) при отыскании из выражения для ;

2) при отыскании интеграла от .

Может оказаться, что эти два интегрирования легко осуществляются, тогда как заданный интеграл непосредственно найти трудно.

Правило интегрирования по частям нередко позволяет довести интегрирование до конца.

Пример. Найти .

Решение.

Пример. Найти .

Решение. .

Некоторые типы интегралов, берущиеся посредством формулы интегрирования по частям:

, где - многочлен