
- •Метод обратной матрицы.
- •11. Теорема и формулы Крамера решения системы п линейных уравнений с п переменными (без вывода).
- •Решение системы линейных уравнений с неизвестными
- •12. Понятие функции, способы задания функций. Область определения. Четные и нечетные, ограниченные, монотонные функции. Примеры. Понятие функции одной переменной
- •Способы задания функций:
- •Основные свойства функций
- •13. Понятие элементарной функции. Основные элементарные функции и их графики (постоянная, степенная, показательная, логарифмическая). Элементарная функция
- •Основные элементарные функции
- •14. Уравнение линии на плоскости. Точка пересечения двух линий. Основные виды уравнений прямой на плоскости (одно из них вывести). Уравнение линии на плоскости
- •Взаимное расположение двух линий
- •Уравнение прямой на плоскости
- •Уравнение прямой, проходящей через заданную точку в данном направлении
- •Уравнение пучка прямых Уравнение прямой в отрезках
- •Общее уравнение прямой и его исследование
- •Точка пересечения прямых
- •15. Общее уравнение прямой на плоскости, его исследование. Условия параллельности и перпендикулярности прямых. Общее уравнение прямой и его исследование
- •Условия параллельности и перпендикулярности двух прямых:
- •16. Предел последовательности при и предел функции при . Признаки существования предела (с доказательством теоремы о пределе промежуточной функции). Предел числовой последовательности
- •Предел функции в бесконечности и в точке
- •Признаки существования предела
- •17. Определение предела функции в точке. Основные теоремы о пределах (одну из них доказать). Предел функции в точке
- •Основные теоремы о пределах. Признаки существования предела
- •Предел алгебраической суммы конечного числа функций равен такой же сумме пределов этих функций, т.Е.
- •Предел произведения конечного числа функций равен произведению пределов этих функций, т.Е.
- •Предел частного двух функций равен частному пределов этих функций (при условии, что предел делителя не равен нулю), т.Е.
- •Бесконечно большие величины
- •Свойства бесконечно больших величин
- •Связь между бесконечно малыми и бесконечно большими величинами
- •19. Второй замечательный предел, число е. Понятие о натуральных логарифмах. Второй замечательный предел.
- •20. Непрерывность функции в точке и на промежутке. Свойства функций, непрерывных на отрезке. Точки разрыва. Примеры. Непрерывность функции
- •Свойства функций, непрерывных в точке
- •1. Если функции и непрерывны в точке , то их сумма , произведение и частное (при условии ) являются функциями, непрерывными в точке .
- •2. Если функция непрерывна в точке и , то существует такая окрестность точки , в которой .
- •Точки разрыва функции
- •Свойства функций, непрерывных на отрезке
- •21. Производная и ее геометрический смысл. Уравнение касательной к плоской кривой в заданной точке. Определение производной
- •Задача о касательной
- •22. Дифференцируемость функций одной переменной. Связь между дифференцируемостью и непрерывностью функции (доказать теорему). Понятие дифференцируемости функции
- •Связь между дифференцируемостью функции и ее непрерывностью
- •23. Основные правила дифференцирования функций одной переменной (одно из этих правил доказать).
- •Основные правила дифференцирования
- •Производная алгебраической суммы конечного числа дифференцируемых функций равна алгебраической сумме производных этих функций, т.Е.
- •5. Производная частного двух дифференцируемых функций может быть найдена по формуле
- •24. Формулы производных основных элементарных функций (одну из формул вывести). Производная сложной функции. Производные основных элементарных функций (таблица производных)
- •Производная сложной функции
- •25. Теоремы Ролля и Лагранжа (без доказательства). Геометрическая интерпретация этих теорем.
- •27. Определение экстремума функции одной переменной. Необходимый признак экстремума (доказать).
- •29. Понятие асимптоты графика функции. Горизонтальные, наклонные и вертикальные асимтоты. Примеры.
- •30. Общая схема исследования функций и построения их графиков. Пример.
- •31. Функции нескольких переменных. Примеры. Частные производные (определение). Экстремум функции нескольких переменных и его необходимые условия. Основные понятия. Частные производные
- •Частные производные функции двух переменных
- •Экстремум функции двух переменных
- •35. Метод замены переменной в неопределенном интеграле и особенности применения этого метода при вычислении определенного интеграла.
- •36. Метод интегрирования по частям для случаев неопределенного и определенного интегралов (вывести формулу). Примеры.
- •Методы вычисления определенного интеграла
- •37. Определенный интеграл как предел интегральной суммы. Свойства определенного интеграла.
- •Геометрический смысл определенного интеграла.
- •Экономический смысл определенного интеграла.
- •Свойства определенного интеграла
- •38. Теорема о производной определенного интеграла по переменному верхнему пределу. Формула Ньютона—Лейбница. Определенный интеграл с переменным верхним пределом
- •Формула Ньютона-Лейбница.
- •40. Вычисление площадей плоских фигур с помощью определенного интеграла. Примеры.
- •41. Понятие о дифференциальном уравнении. Общее и частное решения. Задача Коши. Задача о построении математической модели демографического процесса.
- •Задача о построении математической модели демографического процесса. Задача Коши
- •42. Простейшие дифференциальные уравнения 1-го порядка (разрешенные относительно производной, с разделяющимися переменными) и их решение. Примеры.
- •Рассмотрим некоторые типы дифференциальных уравнений 1-го порядка.
- •Неполные дифференциальные уравнения 1-порядка.
- •Дифференциальные уравнения 1-го порядка с разделяющимися переменными.
10. Решение систем п линейных уравнений с п переменными с помощью обратной матрицы (вывод формулы Х=А –1В).
Для получения
решения системы
при
в
общем виде предположим, что квадратная
матрица системы
невырожденная, т.е. ее определитель
.
В этом случае существует обратная
матрица
.
Метод обратной матрицы.
Запишем систему в матричной форме:
,
где
-
матрица коэффициентов при переменных,
-
матрица-столбец переменных;
-
матрица столбец свободных членов.
Умножим слева обе
части равенства на матрицу
:
;
;
;
.
Таким образом, решение системы в матричном виде .
Пример. Решить
систему уравнений методом обратной
матрицы.
Р е ш е н и е:
Обозначим
;
;
.
Тогда в матричной
форме система имеет вид:
.
Определитель матрицы
,
т.е. обратная матрица
существует:
.
Определим
,
Существенным
недостатком решения систем
линейных уравнений с
переменными по формулам Крамера и
методом обратной матрицы является их
большая трудоемкость, связанная с
вычислением определителей и нахождения
обратной матрицы.
11. Теорема и формулы Крамера решения системы п линейных уравнений с п переменными (без вывода).
Теорема Крамера. Пусть - определитель матрицы системы, а - определитель матрицы, получаемой из матрицы заменой -го столбца столбцом свободных членов. Тогда, если , то система имеет единственное решение, определяемое по формулам:
,
(
).
В соответствии с обратной матрицей , где - матрица, присоединенная к матрице . Т.к. элементы матрицы есть алгебраические дополнения элементов матрицы , транспонированной к , то запишем равенство в развернутой форме:
.
Учитывая, что , получим после умножения матриц:
, откуда следует, что для любого .
На основании свойства 9 определителей , где - определитель матрицы, полученной из матрицы заменой -го столбца столбцом свободных членов. Следовательно .
Решение системы линейных уравнений с неизвестными
Рассмотрим систему линейных уравнений с неизвестными.
Теорема
Кронекера-Капелли.
Система линейных уравнений совместна
тогда и только тогда, когда ранг матрицы
системы равен рангу расширенной матрицы
этой системы:
.
Для совместных систем линейных уравнений верны следующие теоремы:
Теорема 1.
Если ранг матрицы совместной системы
равен числу переменных, т.е.
,
то система имеет единственное решение.
Теорема 2.
Если ранг матрицы совместной системы
меньше числа переменных, т.е.
,
то система является неопределенной и
имеет бесконечное множество решений.
Определение. Базисным минором матрицы называется любой ненулевой минор, порядок которого равен рангу матрицы.
Определение.
Те
неизвестных, коэффициенты при которых
входят в запись базисного минора,
называются базисными (или основными),
остальные
неизвестных называются свободными (или
неосновными).
Решить систему уравнений в случае - это значит выразить базисные переменные через свободные. При этом имеем общее решение системы уравнений. Если все свободные переменные равны нулю, то решение системы называется базисным.
Пример.
Решить систему методом Гаусса:
Р е ш е н и е. Выпишем и преобразуем расширенную матрицу системы. Сначала прибавим к элементам третьей строки элементы первой строки, умноженные на –1. А затем элементы второй строки умножим на –1 и прибавим к элементам третьей строки:
.
Расширенная матрица приведена к ступенчатому виду.
.
Так как ранг матрицы равен 2, а количество
неизвестных равно 4, то система имеет
бесконечное множество решений. В качестве
базисных неизвестных возьмем
и
(т.к. определитель, составленный из их
коэффициентов не равен нулю
),
тогда
и
- свободные неизвестные.
Выразим базисные переменные через свободные.
Из второй строки полученной матрицы выразим переменную :
,
.
Из первой строки
выразим
:
,
.
Общее решение
системы уравнений:
,
.