Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shporka_sist_analiz.doc
Скачиваний:
10
Добавлен:
25.04.2019
Размер:
780.8 Кб
Скачать

2.Анализ связи

Исследование связи между элементами структуры направлено, прежде всего, на выявление в соответствующем графе петель, контуров и сильносвязаных подграфов. Например, граф на рис.4.1 имеет петлю у вершины 11 и два контура, образованные ребрами, соединяющие вершины (4, 5, 6, 9) и (6, 9, 10, 11).

Подграф называется сильносвязным, если все входящие в него вершины взаимодостижимы, т.е. из любой вершины подграфа можно попасть в любую другую его вершину.

2.1.Выделение из графа сильносвязного подграфа

Пусть Qi – множество вершин графа, достижимых из вершины , а Qi – множество вершин графа, из которых можно достичь вершину .

Из определения сильносвязного подграфа следует, что пересечение множеств Q(i) = Qi∩Qi содержит вершины, принадлежащие одному сильносвязному подграфу, поэтому нахождение пересечения Q(i) равносильно определению сильносвязного подграфа, включающего в себя вершину .

Последовательно перебирая и определяя множества Q(i) до тех пор, пока в эти множества не войдут все вершины графа, можно найти его разбиение на сильносвязные подграфы.

2.2.Пример определения сильносвязного графа

Для графа на рис.4.1 найдем его сильносвязные подграфы путем определения следующих пересечений множеств.

Q (1) = {1, 4, 5, 6, 9, 10, 11} ∩ {1} = {1}

Q(2) = {2, 5, 4, 6, 9, 10, 11, 7} ∩ {2} = {2}

Q(3) = {3, 7, 6, 9, 10, 11, 8} ∩ {3} = {3}

Q(4) = {4, 5, 6, 9, 10, 11} ∩ {1,…,11} = {4, 5, 6, 9, 10, 11}

Q(6) = Q(5) = Q(4)

Q(7) = {4, 5, 6, 7, 9, 10, 11,} ∩ {2, 3, 7, 8} = {7}

Q (8) = {8}

Теперь исходный граф можно разбить на сильносвязные подграфы: G(1), G(2), G(3), G(4), G(7), G(8), G(12), из которых только G(4) является нетривиальным (содержит больше одной вершины).

2.3.Граф-конденсация

Представим найденные сильносвязные подграфы как вершины нового графа, показанного на рис.4.2

Рис.4.2. Граф-конденсация

В результате получим граф, называемый конденсацией, который значительно проще исходного и в котором отсутствуют контуры и петли. Построение конденсаций рекомендуется для сложных структур, содержащих большое число элементов. Непосредственное исследование таких структур затруднено, а выделение конденсаций позволяет сосредоточить внимание на анализе существенных связей в наибольшей степени характеризующих особенности взаимодействия элементов системы.

3.Диаметр структуры

Если I и J – множество висячих и тупиковых вершин графа соответственно, то диаметр структуры определяется следующей формулой

d = dij,

, где

dij – длина минимального пути между висячей вершиной и тупиковой вершиной равный числу ребер, составляющих этот путь.

Диаметр структуры характеризует максимальное число связей, разделяющих входные и выходные элементы структуры. По значению диаметра d можно косвенно судить о ряде предельных параметров системы, в частности о ее надежности, длительности, задержках сообщений, идущих от висячих вершин к тупиковым, инерционности. Определение значений dij сводится к стандартной задаче поиска кратчайшего пути на графе для каждой пары (i,j) такой, что , .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]