Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-105 емм Теория(не качал.позаимствовал)(милост....doc
Скачиваний:
17
Добавлен:
23.04.2019
Размер:
1.94 Mб
Скачать
  1. Поняття про опуклі функції. Геометрична інтерпретація задачі опуклого програмування на площині.

Задано n-вимірний лінійний простір Rn. Функція , що задана на опуклій множині , називається опуклою, якщо для будь-яких двох точок та з множини X і будь-яких значень виконується співвідношення:

.

Якщо нерівність строга і виконується для , то функція називається строго опуклою.

Функція , яка задана на опуклій множині , називається угнутою, якщо для будь-яких двох точок та з множини X і будь-якого справджується співвідношення:

.

Якщо нерівність строга і виконується для , то функція називається строго угнутою.

Слід зазначити, що опуклість та угнутість функції визначаються лише відносно опуклих множин у , оскільки за наведеними означеннями разом з двома будь-якими точками та множині X належать також точки їх лінійної комбінації: для всіх значень , що можливо лише у разі, коли множина X є опуклою.

Теорема1 Нехай — опукла функція, що задана на замкненій опуклій множині X, тоді будь-який локальний мінімум на цій множині є і глобальним.

Теорема2 Нехай — опукла функція, що визначена на опуклій множині Х, і крім того, вона неперервна разом з частинними похідними першого порядку в усіх внутрішніх точках Х. Нехай — точка, в якій . Тоді в точці досягається локальний мінімум, що збігається з глобальним.

  1. Сідлова точка та необхідні і достатні умови її існування. Теорема Куна-Таккера.

Сідлова́ то́чка — один із типів стаціонарних точок функції багатьох змінних, в якому перші похідні функції дорівнюють нулю, але матриця других похідних не є додатно визначеною.

Необхідні умови сідлової точки:

для тих індексів j, де .

для тих індексів j, де .

, — довільного знака.

для тих індексів і, де ,

для тих індексів і, де ,

для тих індексів і, де має довільний знак.

Теорема Куна—Таккера дає змогу встановити типи задач, для яких на множині допустимих розв'язків існує лише один глобальний екстремум зумовленого типу. Вона тісно пов'язана з необхідними та достатніми умовами існування сідлової точки

Розглянемо задачу нелінійного програмування, яку, не зменшуючи загальності, подамо у вигляді:

maxF=ƒ(X), (1)

qi(X)≤bi (i=1,m), (2)

xj ≥0 (j=1,n) (3)

Теорема Куна—Такера Вектор X* є опти­мальним розв'язком задачі (1)—(3) тоді і тільки тоді, коли існує такий вектор ٨*, що при X* ≥ 0, ٨*≥ 0 для всіх Х≥0, ٨≥0 точка (Х*,٨*) є сідловою точкою функції Лагранжа L(X,٨)= ƒ(X)+ λi (bi - qi(X)),

і функція мети f(X) для всіх Х≥0 угнута, а функції qi(X (i = 1,m) —опуклі.

  1. Квадратична функція та її властивості.

Квадратична функція n змінних називається квадратичною формою і може бути подана у вигляді:

,

де , , ,

причому матриця С завжди симетрична, тобто для всіх .

Квадратична форма Z(X) називається від’ємно означеною, якщо для всіх Х, крім Х = 0, значення Z(X) < 0 (якщо Z(X) ≤ 0, то маємо від’ємно напівозначену квадратичну форму), у протилежному разі Z(X) є додатно означеною (якщо Z(X) ≥ 0, то маємо додатно напівозначену квадратичну форму).

Квадратична форма Z(X) називається неозначеною, якщо вона додатна для одних значень Х і від’ємна для інших.

Вид квадратичної форми можна визначити, використовуючи

— вектор характеристичних коренів (власних значень) матриці С.

Для того, щоб довільна квадратична форма була додатно (від’ємно) означеною, необхідно і достатньо, щоб усі компоненти вектора характеристичних коренів були додатними (від’ємними) значеннями. Якщо хоча б один із характеристичних коренів дорівнює нулю, то квадратична форма є напівдодатною (напіввід’ємною). Якщо корені мають різні знаки, то квадратична форма є неозначеною.