Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Термех шпоры.docx
Скачиваний:
10
Добавлен:
15.04.2019
Размер:
478.95 Кб
Скачать

4.Принцип Даламбера и премененеие методов кинетостатики для расчета основной схемы рычажного манипулятора.

Если в каждый момент времени к фактически действующим на точку силам и прибавить силу инерции , то полученная система сил будет уравновешенной, т.е. будет

.

Это выражение выражает принцип Даламбера для одной материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает . Перенося здесь член в правую часть равенства и придем к последнему соотношению.

Принцип Даламбера для системы: если в любой момент времени к каждой из точек системы, кроме фактически действующих на ней внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и к ней можно будет применять все уравнения статики.

Применяя принцип Даламбера, следует иметь в виду, что на точку механической системы, движение которой изучается, действуют только внешние и внутренние силы и , возникающие в результате взаимодействия точек системы друг с другом и с телами, не входящими в систему; под действием этих сил точки системы и движутся с соответствующими ускорениями . Силы же инерции, о которых говорится в принципе Даламбера, на движущиеся точки не действуют (иначе, эти точки находились бы в покое или двигались без ускорений и тогда не было бы и самих сил инерции). Введение сил инерции - это лишь приём, позволяющий составлять уравнения динамики с помощью более простых методов статики.

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю. Тогда на основании принципа Даламбера должно быть:

Введём обозначения:

Величины и представляют собой главный вектор и главный момент относительно центра О системы сил инерции. В результате, учитывая, что геометрическая сумма внутренних сил и сумма их моментов равны нулю, получим из равенств:

, (1)

Применение уравнений (1), вытекающих из принципа Даламбера, упрощает процесс решения задач, т.к. эти уравнения не содержат внутренних сил.

В проекциях на оси координат эти равенства дают уравнения, аналогичные соответствующим уравнениям статики. Чтобы пользоваться этими уравнениями при решении задач, надо знать выражение главного вектора и главного момента сил инерций.

5.Определения центра масс, момента инерции и радиуса энерции твердого тела.

Масса системы равна арифметической сумме масс всех точек или тел, образующих систему. M=∑mk. Геометрическая точка C, геометрическое место которой определяются формулами xc=(1/M)∑mkxkи тд, называется центром масс или центром инерции механической системы. Так же rc=(1/M)∑mkrk–для радиус-векторов.

Моментом инерции тела (системы) относительно данной оси Oz(или осевым моментом инерции) называется скалярная величина, равная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси. Jz=∑mkhk2. Осевой момент инерции является мерой инертности тела при вращательном движении. Радиусом инерции тела относительно оси Ozназывается линейная величина ρz, определяемая равенством . Jz=Mρk2 где М – масса тела. Радиус инерции геометрически равен расстоянию от оси до точки, в которой надо сосредоточить массу всего тела, чтобы момент инерции одной этой точки был равен моменту инерции всего тела.

Момент инерции тонкого однородного стержня. J=Ml2/3

Тонкое круглое однородное кольцо J=MR2

Круглая однородная пластина и однородного круглого цилиндра J=MR2/2

Прямоугольная пластина Jx=Mb2/3

Прямой сплошной круглый конус J=0.3 MR2

Сплошной шар J=0.4MR2

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.