Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Stroymat_Materialovedenie.doc
Скачиваний:
71
Добавлен:
21.12.2018
Размер:
7.21 Mб
Скачать

Глава 20 Заключительная

В заключительной главе обобщены наиболее принципиальные и значимые положения строительного материаловедения, которые пока почти отсутствуют в учебной литературе, но призваны влиять на уровень мировоззрения специалистов (или будущих специали­стов) в этой отрасли. Следует отметить, что все выделяемые в резю­ме положения публиковались автором и ранее в периодической пе­чати и разного рода научных сборниках.

Современное строительное материаловедение как фундамента­льная наука прикладного характера состоит из двух частей — практической и теоретической. Практика в этой науке, подобно большинству наук, всегда имела приоритетное значение и под об­щим названием «Строительные материалы» или «Строительные материалы и изделия» она многократно на высоком научном уров­не [50] излагалась, в основном, в учебниках и учебных пособиях. Теория, призванная систематизировать и обобщать практические данные в объективных закономерностях, в своем историческом развитии непреклонно следовала за практикой, иногда временно опережая ее, но, тем не менее, непрерывно находясь с ней в тесней­шей взаимосвязи. Как показано в этом учебном пособии, тес­нейшая взаимосвязь практики и теории служит спонтанным фак­тором саморазвития науки и формирования мировоззрения о строительном материаловедении как фундаментальной науке при­кладного характера.

Становление строительного материаловедения относится к древнейшему периоду и связано с началом использования обжига глины и глинистых изделий с целью придания им твердого и водо­стойкого состояния. Исторический путь этой фундаментальной науки насчитывает три этапа, весьма неравных по своей продол­жительности. Они описаны в первой главе книги, но ввиду прин­ципиальной значимости, как всякой истории, изложены еще и в отдельной брошюре [12]. Исторический процесс составляет важ­нейший элемент изучения этой фундаментальной науки.

Многочисленные природные и искусственные строительные ма­териалы в этой науке объединены с помощью единой классифика­ции. В ней каждый материал и все вместе проходят постадийное во времени формирование. Кроме традиционных, в нее внесены пока отсутствующие в номенклатуре. Открытие новых или моди­фицированных материалов с разработкой соответствующих техно­логий сопровождается заполнением в классификации свободных мест (клеток), что является закономерным процессом с исключением из него элементов случайного изобретательства. Вследствие та­кого закономерного процесса классификация имеет динамичный характер. Каждый новый, вносимый в нее материал остается не только сходным с предыдущими в ней, но при оптимальной струк­туре и подобным им. Наиболее ярко выраженной разновидностью материалов представлены искусственные строительные конгломе­раты (ИСК). Им посвящена в строительном материаловедении спе­циальная теория из четырех взаимно связанных частей, достаточно подробно изложенных ранее [39] и в настоящей книге.

Важнейшим положением является оптимизация структур в стро­ительном материаловедении, многократно использованная и полно­стью апробированная в практике (на производстве). Она обеспечена общим научно обоснованным методом проектирования и корректи­рования составов ИСК с использованием в нем эксперименталь­но-математических и компьютерных программ (например, типа Ex­cel, а ранее — программ на языках Бейсик или Фортран). Об этом подробно изложено в настоящем учебном пособии и в ранее издан­ных [42, 45].

В строительном материаловедении сформулирована и доказана теорема о подобии материалов оптимальной структуры: геометри­ческом, физическом и технологическом. Предложен индикатор по­добия И.А. Рыбьева, который при его значении, равном единице, констатирует наличие у материалов оптимальной структуры и, как следствие, их подобие между собой [19, 30, 41].

Предложена общая теория отвердевания матричного вещества в ИСК, ранее опубликованная в [19, 38]. На фоне большого скопления специфических, частных теорий твердения различных — неоргани­ческих и органических — вяжущих веществ общая теория отверде­вания в строительном материаловедении весьма уместна и целесооб­разна. Она с термодинамических позиций ориентирует практику на технологические процессы, фиксирующие минимумы энтропии и комплекс наилучших качественных показателей при оптимальных структурах и, следовательно, являющихся экстремальными. Важно, чтобы показатели качества готовых изделий находились не только на уровне заданных (проектных), но и чтобы последние становились экстремумами, обеспечивая действие закона створа.

Изложено первое в истории отечественного материаловедения научное открытие — закон створа, — подтвержденное дипломом Международной ассоциации авторов научных открытий: «Законо­мерность соответствия физических свойств и структуры твердого и твердообразного (упруговязкопластичного) материала» (регистра­ционный № АНО-2/58 от 01.11.98). Суть его заключается в том, что «комплекс экстремальных значений главных физических свойств твердого и твердообразного (упруговязкопластичного) материала соответствует их оптимальной структуре, характеризующейся равномерным расположением дискретных частиц и непрерывностью пространственной сетки связующего при минимальных толщинах его распределения...» [26, 33]. Изложена также сущность двух других общих законов, открытых автором, — закон конгруэнции и закон прочности оптимальных структур. Как и закон створа, они внесли существенное углубление объективных знаний в этой науке, способ­ствовали обеспечению эффективных решений технологических за­дач в практике [27, 34].

С учетом общих и объективных законов, упомянутых выше, выведены общая (3.3) и еще более полная — обобщенная (3.10) формулы прочности ИСК оптимальной структуры, все члены в которых имеют строгий физический смысл [19]. Общая формула увя­зана с формулой прочности Гриффитса и выражена в виде зависи­мости (3.7). В ней упрочняющие факторы (в числителе) и разупрочняющие (в знаменателе) ориентируют на конкретные практические мероприятия, благоприятствующие достижению вы­сшего качества готовой продукции как первого критерия прогрес­сивных технологий (см. 6.3.1). Примечательно, что в общей фор­муле прочности для любых видов напряжений впервые содержатся практически все структурные элементы и отражено влияние глав­ных технологических параметров, влияющих в той или иной мере на числовые значения прочности — количество и качество вяжу­щего вещества, его расчетная прочностная характеристика, коли­чество и качество заполняющей части в ИСК, пористость, интен­сивность уплотнения, температура, скорость деформирования и др. Формулы лежат в основе программ, используемых при проектиро­вании оптимальных составов ИСК и оптимальной структуры [28, 42, 45]. Побочным следствием из общей формулы прочности и закона конгруэнции является взаимосвязь между активностью вяжу­щего матричного вещества и его количеством в ИСК оптимальной структуры (3.13).

Раскрыта сущность и разработана комплексная смысловая и ко­личественная критериальная характеристика прогрессивных техно­логий в строительном материаловедении с учетом уровня мировых достижений в данной конкретной отрасли [35, 36]. Отмечено, что принятая в настоящее время оценка прогрессивности и эффективно­сти производства, научных разработок, проектных решений и т. п. по одному-двум показателям (обычно по качеству или по себестои­мости продукции) являются безусловно недостаточными, поскольку при их удовлетворительном уровне все остальные могут оказаться неудовлетворительными или пониженными по сравнению с сущест­вующими достижениями в данной отрасли производства.

Разработаны типичные оптимизирующие факторы, используе­мые для совершенствования технологий до уровня прогрессивных по всему комплексу критериальных значений. Являясь в системе ти­пичными, факторы пригодны для практических технологий различ­ной направленности [32], но в каждрй из них они принимают ярко выраженное конкретное содержание реализуемых мероприятий.

Показаны три временных элемента, слагающих долговечность ИСК оптимальной структуры. Решаемая задача заключается во все­мерном увеличении каждого временного элемента, причем особое внимание уделяется комплексу оперативных мероприятий по тормо­жению деструкции ИСК в конструкциях за счет, например, ингибирующих добавок, вводимых в технологический период, или своевре­менных обработок, применяемых в эксплуатационный период [19, 36, 37].

В Российской архитектурно-строительной энциклопедии отме­чено: теория ИСК «служит важнейшим теоретическим компонен­том» [23]. В частности, по своему содержанию и построению она составляет эффективную методологическую основу научно-техни­ческих исследований новых и модифицированных строительных материалов с применением в них различных сырьевых веществ и технологий. Первая часть этой теории, именуемая теоретической технологией, исходит из закономерностей, на которые опираются переделы производства. Во второй части сосредоточены законы оптимальных структур, в третьей — проблемы долговечности и на­дежности готовой продукции. Четвертая часть устанавливает науч­ную достоверность исследований и полученных результатов при тщательном техническом контроле на производстве. Как методо­логическая основа, теория ИСК была многократно использована при разработке эффективных материалов и изделий на неорганиче­ских и органических, в том числе полимерных, вяжущих веществах по безобжиговой и обжиговой технологиям [37]. Среди наиболее значимых — легкие бетоны с применением в них вакулита, шаро­образного керамзита; арболиты обычные и прессованные на осно­ве портландцемента и высокопрочного гипса и с применением обо­гащенного древесного заполнителя; изоляционно-отделочные древесно-минеральные плиты повышенной прочности; керамзито-золобетон поризованный на основе нового цементно-зольного вяжущего вещества; цементный бетон прессованный для тоннеле­строения; расширение сырьевой базы из гипсового камня понижен­ного качества, включая его третий сорт, для производства высоко­прочного гипса альфа-модификации; новые абразивные круги для механической обработки (шлифования) прочных горных пород (типа гранитов) на основе магнезиально-перлитовых и шлакощелочных вяжущих веществ; рулонный кровельный эластостеклобит наплавляемого типа; полиуретановый герметик; дренирующий ас­фальтовый бетон для быстропросыхающих дорожных покрытий, архитектурно-выразительные отделочные крупногабаритные кера­мические плиты типа «Чак-Чак» и многие другие. В основе обеспе­чения их качества лежит принцип оптимизации структуры, дости­гаемой с помощью общего и единого методов проектирования их составов.

Изложена сущность синергообработки на примере синергобето-нирования. Проф. А.С. Арбеньев разработал специальное оборудо­вание, которое позволило одновременно использовать при совме­щении компонентов бетонной смеси несколько видов энергии. Последующее постепенное остывание отформованного изделия бла­гоприятствует протеканию процессов структурообразования с ми­нимумом технологической пористости и повышенным качеством готовой продукции.

Синергообработка получила несколько иное направление, но так­же с положительным эфектом, в работах других авторов (К.В. Чаус, Л.Н. Попов) — см. Рыбьев И.А. Основы строительного материалове­дения — в лекционном изложении. Изд. ACT, 2004.

Подробнее, чем обычно, изложено в этой книге о пресной воде, как природном минерале и важнейшем компоненте в матрицах ИСК, а также о способах ее активирования и всемерной экономии. Детально рассмотрены в ней нестандартные способы оценки ак­тивности цемента и других неорганических вяжущих веществ в ха­рактерных формулах прочности и деформируемости.

Использована общая теория отвердевания при изложении техно­логии изготовления строительных конструкций из различных бето­нов.

Определены новые формулы прочности цементных бетонов, полностью отражающие факторы их внутреннего строения, качест­ва компонентов и их взаимосвязи и разработаны типовые критерии прогрессивных технологий.

Изложены сведения о современных разновидностях сухих рас­творных смесей.

Впервые приведен метод оценки удобообрабатываемости ас­фальтобетонных смесей вместо используемой в настоящее время визуальной оценки.

Развита теория и производственная технология арболитов, опи­саны способы их вибропрессования.

Процесс дальнейшего расширения и модернизации строительно­го материаловедения, как фундаментальной науки прикладного ха­рактера, продолжается с соответствующим совершенствованием ми­ровоззренческих основ современной строительной индустрии.

1 Лукреций Тит Кар. О природе вещей / Пер. Ф.А. Петровского. М., 1958.

1 Российская архитектурно-строительная энциклопедия. М., 1995.

1 Эта теория в дальнейшем называется «Теория ИСК».

1 Подробно см. в [19, 39].

1 Металлы по плотности условно разделяют на легкие (плотность их меньше 5) и тяжелые (с истинной плотностью больше 5).

2 Фазой называется часть системы, отграниченная от других поверхностью раз­дела; она имеет одинаковые состав и свойства, т.е. относится к однородной (гомоген­ной) системе.

1 Синерезис - самопроизвольное сжатие, сопровождаемое отделением жидкой среды (экссудата).

1 Реология — наука о течении, развивающемся в материале во времени.

1 Относительная плотность равна отношению величин средней плотности изде­лия к его истинной плотности.

1 Более точно — диссолюция.

1 Эпитаксия — ориентированный рост одного монокристалла на поверхности другого (подложки).

1 Обоснованным выбором элементов структуры и количественной оценкой их содержания в структуре занимается специальная наука — стереология.

1 Баженов П.И. Улучшение качества конгломератных материалов фракциони­рованием заполнителя // Строительные материалы. 1978, 9.

1 Раздельная технология в 1920-х годах была впервые предложена д.т.н., проф. П.В. Сахаровым применительно к производству асфальтобетона.

1 Рыбьев И.А. Типизация параметров взамен устаревших стандартов. Вестник БГТУ им. В.Г. Шухова, № 5, 2003.

1 Нередко величину водопоглощаемости называют водопоглощением хотя этот термин характеризует процесс поглощения воды материалом и не относится к свойству материала.

1 Рыбьев И.А. Открытие закона створа, его сущность и значимость // Строите­льные материалы, технологии, оборудование XXI в. 1999. 3-4.

1 Рыбьев И.А., Скрыльников Д.К. О минимально допустимой прочности камен­ного материала, применяемого в асфальтовом бетоне // Изв. ВУЗов. Разд. Строитель­ство и архитектура. Новосибирск. 1972, вып. 5.

Рыбьев И.А., Голованова .Л.В. Релаксация напряжений в асфальтобетоне оптимальной структуры // Изв. ВУЗов. Разд. Строительство и архитектура. Новоси­бирск. 1974, вып. 10.

1 Патуроев В.В., Соловьев Г.К. Устойчивость полимерных бетонов. ФИП. 78 Eighth Congress, ProceeDynojs: Pariti, 1978.

1 Комаровский А.А. Механизм разрушения бетона и перспективные меры обес­печения его долговечности. Киев. 1988.

1 Журков С Н Дилатонный механизм прочности твердых тел // ФТТ. 1983, т. 25, № 10.

1 Рыбьев И.А., Нехорошее А.В. Исходные методические позиции при исследова­нии ИСК // Строительные материалы. 1980, № 2. С. 24—26.

1 Ефименко А.З. Применение метода экспертных оценок в строительной индуст­рии. М: МГСУ, 2001.

1 В стереорегулярных полимерах все звенья расположены в пространстве в определенном порядке.

1 Гонт, или драница, — узкие и тонкие дощечки для покрытия крыши.

1 Глава в основном подготовлена доц., канд. техн. наук Рыбьевой Т. Г.

1 Далее истинная плотность обозначается как плотность.

1 Здесь и далее характеристика твердости приводится по шкале Мооса.

1 Победит — металлокерамический твердый сплав с содержанием до 90% Воль­фрама (W) и до 10% кобальта (Co).

1 Для ориентировки следует учесть, что первый оксид (СаО) составляет 2/3 всего количества; каждый последующий (SiO2, A12O3, Fe2O3) — 1/3 количества предыдущего оксида («Мнемоническое правило»).

1 Одни сутки образцы в формах хранятся, во влажном воздухе и 27 суток — освобожденные от форм в воде; температура 20±2°С.

1 Предложено А.В. Волженским и А.В. Ферронской.

1 Согласно закону Кулона: , где F — сила взаимодействия между заряда­ми e1 и е2; r — расстояние между центрами ионов; ε — диэлектрическая проницае­мость растворителя (для воды при 20°С величина ε = 80).

1 Львович К. Песчаный бетон: родина — Россия // Стройка. 2000. 34.

1 Более полные сведения о заполнителях для тяжелого и легкого бетонов см. в ж. «Стройка», 2000, № 5, с. 139—141.

1 Для прикидочных опытов размеры образцов могут быть приняты и меньших размеров, например 2x2x2 см в целях экономии вяжущего вещества.

1 Все найденные значения Ц, В, П и Щ умножены на 10 потому, что в 1 тонне (1000 кг) каждый 1% составляет 10 кг. Поэтому Ц% составляет Ц 10 кг, и т. д.

1 Если сумма окажется больше или меньше 1000, то надо искать в расчетах арифметическую ошибку.

2 Проектирование оптимального состава может осуществляться и по другим качественным требованиям к бетону: средней плотности, морозостойкости и т. д.

1 Арбеньев А.С. От: электротермоса к синэргобетонированию. Владимир, ВГГУ, 1996. Синэргобетонирование изделий и конструкций: Сб. тезисов. Владимир, ВГГУ, 1998.

1 Научно-производственные работы М.И. Клименко и А.А. Акчабаевым вы­полнялись под научным руководством И.А. Рыбьева

1 Архитектурный бетон: комплексное управление эксплуатационными и деко­ративными характеристиками / Н.Ф. Башлыков, В.Р. Фаликман, Ю.В. Сорокин, В.В. Денискин: Сб. трудов I Всероссийской конференции по проблемам бетона и же­лезобетона, Т. 2, М., 2001.

1 Бернацкий А.Ф. Электроизоляционный бетон для электроэнергетического строительства. Автореферат докт. диссерт. Новосибирский ГАСУ, 2001.

1 Более точные интервалы этих коэффициентов: для бетона (0,7—1,48)∙10-5 град-1, для стали 1,1∙10-5 град-1.

1 Анурозтивили Ш., Муродян 3. Как повысить несущую способность стен // Стройка. 2000. 1. С. 131—132.

1 Денисов Г. Отечественный мини-завод сухих смесей // Стройка. 2000. 32.

1 Мелик-Багдасаров М.С. и др. Устройство асфальтобетонных покрытий мето­дом вибролитья // Наука и техника в строительстве. 1997. 3.

1 Патуроев В. В. Стеклополимербетонные строительные конструкции М Строииздат, 1972.

1 Кубовые остатки производства синтетических жирных кислот получают при окислении парафинов. По внешнему виду — желеобразная масса. Содержат свыше 85% водонерастворимых жирных кислот.

1 По материалам научно-производственной работы к.т.н. С.Х. Исламкуловой выполнявшейся под научным руководством И.А. Рыбьева.

1 См. подробнее в 9.1.2, а также «Шлакощелочные цементы, бетоны и конструк­ции» / Материалы 3-й Всесоюзной научно-практической конференции (в двух томах). Киев, 1989.

1 Львович К. Вибропрессованная цементно-песчаная черепица // Стройка. 2000. 7.

1 Железцов В. А., Янбаева Г.У. и др. Способ упрочнения изделий из стекла. Авт. св. №793206. Б.И. 1981, 12, с.5

Железцов В. А., Янбаева Г.У. Зависимость ионного обменного упрочнения - 1 от его термической предыстории. — Физика и химия стекла, 1983, т. 9. № 4.

1 Ряд металлов по химической активности был установлен акад. Н.Н. Бекетовым в 60-х годах XIX в.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]