
- •Системний аналіз конспект лекцій
- •Передмова
- •Модуль і. Система, системність та Інформація тема №1. Основні методи та процедури системного аналізу в дослідженні систем
- •1.1. Історичний розвиток концепції системного підходу
- •1.2. Наукова база системного аналізу
- •1.3. Системні ресурси суспільства
- •1.4. Основні принципи системного аналізу
- •1.5. Основні процедури системного аналізу
- •1.6. Загальна класифікація систем. Великі та складні системи
- •1.7. Основні топологічні структури систем. Опис систем з різними структурами
- •Лінійні структури:
- •Ієрархічні (деревоподібні) структури:
- •Мережеві структури:
- •Матричні структури:
- •1.8. Основні ознаки, цілі та задачі соціальних систем. Цілеспрямоване поводження системи
- •1.9. Системний підхід в аналізі міжнародних відносин
- •Питання для самоконтролю
- •Тема №2. Опис та моделювання систем
- •2.1. Морфологічний опис систем
- •2.2. Еволюція, розвиток та функціонування системи. Саморозвиток системи. Гнучкість системи. Стійкість систем
- •2.3. Загальна схема керування системою. Керування в системі і керування системою. Функції і задачі керування системою
- •2.4. Моделювання систем
- •2.5. Причинно-наслідковий зв'язок між системами. Когнітологія та когнітивна структуризації систем
- •2.6. Синергетичний підхід в аналізі систем
- •Питання для самоконтролю
- •Тема №3. Поняття інформації та види інформації в системі
- •3.1. Класифікація інформації по різних ознаках
- •3.2. Базові поняття інформаційних рішень (факт, знання, відомості, дані, інформація, інформаційний ресурс) в міжнародних відносинах
- •3.3. Інформаційні ресурси соціальних систем
- •3.4. Документ, як інформаційний ресурс
- •Питання для самоконтролю
- •Тема №4. Організація інформації для керування системою
- •4.1. Методи одержання та використання інформації
- •4.2. Міра, кількість та ентропія інформації в системі
- •4.3. Інформаційне керування системою. Інформаційне середовище. Інформаційні системи керування
- •Модуль іі. Аналіз випадкових величин в соціальних системах тема №5. Основні властивості випадкових величин
- •5.1. Загальні поняття випадкових величин в системі та їх основні характеристики. Дискретні та неперервні величини
- •5.2. Класифікація подій. Методи аналізу ймовірностей випадкових подій
- •5.3. Розрахунок ймовірностей подій, як співвідношення кількості сприятливих результатів до загального числа результатів
- •5.4. Розрахунок ймовірностей подій за допомогою графів можливих результатів
- •5.5. Розрахунок ймовірностей складних подій, що представлені у вигляді комбінаторних елементарних подій
- •5.6. Функція розподілу випадкової величини. Числові характеристики випадкових величин (мода, медіана, математичне очікування, середньоквадратичне відхилення, дисперсія, коефіцієнт варіації)
- •5.7. Закони розподілу випадкових величин (параметрична статистика)
- •Питання для самоконтролю
- •Тема №6. Шкалювання випадкових величин. Перевірка статистичної гіпотези
- •6.1. Номінальна, рангова, інтервальна та відносна шкала (непараметрична статистика)
- •6.2. Поняття статистичної гіпотези
- •6.3. Критерій "хі-квадрат" перевірки статистичної гіпотези
- •6.4. Використання коефіцієнта конкордації для перевірки статистичних гіпотез
- •Питання для самоконтролю
- •Тема №7. Аналіз взаємозалежності
- •7.1. Залежності та взаємозв'язок випадкових подій в системі. Функціональна та статистична залежність
- •7.2. Аналіз взаємної спряженості випадкових величин
- •7.3. Коефіцієнт Пірсона. Коефіцієнт Чупрова
- •7.4. Коефіцієнт контингенції. Коефіцієнт асоціації
- •Питання для самоконтролю
- •Тема №8. Кореляційний аналіз
- •8.1. Кореляція випадкових величин. Кореляційний аналіз. Коефіцієнт кореляції
- •8.2. Дослідження залежностей кореляції від вибору шкали вимірювання
- •Питання для самоконтролю
- •Тема №9. Регресійний та факторний аналіз
- •9.1. Метод регресійного аналізу. Лінійна регресія
- •9.2. Загальна характеристика факторного аналізу
- •Інтерпретація факторів.
- •9.3. Центроідний метод л. Терстоуна
- •Питання для самоконтролю
- •Тема №10. Автоматизований аналіз міжнародних подій
- •10.1. Комп'ютерні системи аналізу даних. Пакети прикладних програм статистичного аналізу. Класифікація статистичних пакетів прикладних програм
- •10.2. Загальна організація інструментарію пакетів прикладних програм
- •10.3. Використання електронних таблиць в системному аналізі міжнародних відносин
- •Питання для самоконтролю
- •Джерела інформації
Питання для самоконтролю
-
Охарактеризувати типи шкал, що використовуються для вимірювання випадкових величин в системі.
-
Охарактеризувати основні етапи кореляційного аналізу.
-
Охарактеризувати коефіцієнт кореляції, та його показники.
-
Охарактеризувати поняття множинної кореляції.
-
Охарактеризувати поняття приватної кореляції.
-
Визначити коефіцієнт кореляції, що використовується для номінальних величин.
-
Визначити коефіцієнт кореляції, що використовується для комбінації номінальної та кількісної шкал.
-
Визначити для яких величин застосовується коефіцієнт кореляції Спірмена.
-
Визначити для яких величин застосовується коефіцієнт кореляції Кендела.
-
Визначити для яких величин застосовується коефіцієнт кореляції Пірсона.
Джерела інформації : [1, 4, 7, 8, 10, 11, 15, 17, 18]
Тема №9. Регресійний та факторний аналіз
9.1. Метод регресійного аналізу. Лінійна регресія
При вивченні імовірнісних залежностей використовується один із найбільш поширених методів опрацювання даних - метод регресійного аналізу. Він складається з визначення загального вигляду рівняння регресії, побудові статистичних оцінок невідомих параметрів, що входять у рівняння регресії, і перевірці статистичних гіпотез про регресію.
Відмінною особливістю рівнянь, які використовуються у цьому випадку, є наявність двох видів змінних - залежних і незалежних. На практиці часто використовують моделі, у яких є одна залежна змінна - функція і декілька незалежних змінних аргументів:
Y=F(X1,...Xi)
Поділ змінних на залежну і незалежні в регресійному аналізі завжди проводиться на основі змістовних понять.
У найпростішому випадку є одна залежна й одна незалежна змінна, множинна регресія має декілька незалежних змінних (регресорів). Загальна обчислювальна задача, яку вирішують при аналізі методом множинної регресії, складається в наближені прямої лінії до деякого набору крапок.
Лінія регресії будується так, щоб мінімізувати квадрати відхилень цієї лінії від крапок, тому цю процедуру іноді називають оцінюванням по методу найменших квадратів.
Пряма лінія на площині (у просторі двох вимірів) задається рівнянням:
Y=aX +b.
де змінна Y може бути виражена через кутовий коефіцієнт a помножений на змінну X плюс константа b. Кутовий коефіцієнт a називають регресійним коефіцієнтом, а константу b - вільним членом.
Висувається наступна гіпотеза: випадкова величина Y при фіксованому значенні величини X розподілена нормально з математичним очікуванням
My = a X + b і дисперсією Dy, що не залежить від X.
При наявності результатів спостережень над парами Xi і Yi попередньо обчислюються середні значення My і Mx, а потім вираховується оцінка регресійного коефіцієнта a:
,
де
Rxy - коефіцієнт кореляції
Sy, Sx - середньоквадратичні відхилення по X та Y, відповідно.
За отриманим регресійним коефіцієнтом a вираховується оцінка вільного члена b:
b = My
- a
MX
та проводиться перевірка значимості отриманих результатів.
Регресійний коефіцієнт a та вільний член b можна знайти і не обраховуючи математичне очікування, середньоквадратичне відхилення та коефіцієнт кореляції. Для цього застосовуються формули:
Основне концептуальне обмеження всіх методів регресійного аналізу полягає в тому, що вони дозволяють знайти тільки числові залежності, а не причинні зв'язки.