
- •Робочий зошит для проведення практичних занять з дисципліни «Вища математика»
- •5.03050702 «Комерційна діяльність»
- •Практична робота № 1
- •Теоретичні відомості про перетворення графіків тригонометричних функцій.
- •Методичні рекомендації до виконання роботи.
- •Теоретичні відомості про графіки обернених тригонометричних функцій.
- •Методичні рекомендації до виконання роботи
- •Питання для самоперевірки вмінь:
- •Тема2. Комплексні числа практична робота № 2
- •Інструкційні картки;
- •Теоретичні відомості про комплексні числа.
- •Питання для самоперевірки знань, умінь.
- •Тема 3. Елементи лінійної алгебри практична робота № 3
- •Інструкційні картки;
- •Теоретичні відомості про матричний спосіб розв’язування систем лінійних рівнянь.
- •Питання для самоперевірки знань, умінь
- •Тема 4. Елементи векторної алгебри практична робота № 4
- •Інструкційні картки;
- •Теоретичні відомості про скалярний, векторний та мішаний добутки.
- •Питання для самоперевірки знань, вмінь:
- •Тема 5. Аналітична геометрія практична робота № 5
- •Інструкційні картки;
- •Теоретичні відомості про кути між прямими, взаємне розташування прямих в просторі.
- •Питання для самоперевірки знань, вмінь:
- •Практична робота № 6
- •Інструкційні картки;
- •Приклади задач;
- •Теоретичні відомості про коло.
- •Теоретичні відомості про еліпс.
- •Теоретичні відомості про гіперболу
- •Теоретичні відомості про параболу
- •Питання для самоперевірки знань, умінь.
- •Тема 6. Системи лінійних нерівностей і лінійне програмування практична робота № 7
- •Інструкційні картки;
- •Приклади задач;
- •Теоретичні відомості про транспортну задачу.
- •Питання для самоконтролю знань, умінь.
- •Тема 7. Диференціальне числення функції однієї змінної. Практична робота № 8
- •Інструкційні картки;
- •Приклади задач;
- •Теоретичні відомості про правила диференціювання.
- •Теоретичні відомості про диференціал функції.
- •Питання для самоконтролю знань, умінь.
- •Практична робота №9
- •Інструкційні картки;
- •Приклади задач;
- •Теоретичні відомості про найбільше і найменше значення функції на проміжку
- •Теоретичні відомості про екстремум функції.
- •Теоретичні відомості про застосування похідної.
- •Питання для самоконтролю знань, умінь.
- •Тема 8. Диференціальне числення функції багатьох змінних практична робота №10
- •Інструкційні картки;
- •Приклади задач;
- •Теоретичні відомості про правила диференціювання.
- •Частинні похідні.
- •Питання для самоконтролю знань, умінь.
- •Тема 9. Інтегральне числення. Практична робота № 11
- •Інструкційні картки
- •Приклади задач
- •Теоретичні відомості про правила інтегрування та застосування визначеного інтегралу.
- •1. Визначений інтеграл та методи його обчислення
- •2. Застосування визначеного інтегралу до обчислення шляху за відомим законом зміни швидкості.
- •Питання для самоконтролю знань, умінь.
- •Тема 10. Диференціальні рівняння практична робота № 12
- •Інструкційні картки
- •Приклади задач
- •Теоретичні відомості про диференціальні рівняння другого порядку зі сталими коефіцієнтами.
- •Питання для самоконтролю знань, умінь.
- •Література
- •Рецензія
Питання для самоконтролю знань, умінь.
-
Які точки називаються критичними ?
-
Правило знаходження найбільшого та найменшого значення функції.
-
Які точки називаються точками максимуму і точками мінімуму ?
-
Перше правило відшукання екстремуму функції.
-
Друге правило відшукання екстремуму функції.
-
Фізичний зміст похідної.
-
Геометричний зміст похідної. Рівняння дотичної до графіка функції.
Перевірив викладач_________________ Оцінка _________Дата________
Тема 8. Диференціальне числення функції багатьох змінних практична робота №10
Тема. Основні поняття та означення функції багатьох змінних. Частинні похідні. Екстремуми функції багатьох змінних. Необхідна умова існування точок екстремуму.
Мета роботи: засвоїти означення функції двох змінних, правила дослідження на екстремум; навчитись проводити дослідження функції двох змінних на екстремум; застосовувати здобуті навички для розв’язування прикладних задач економічного змісту.
Наочне забезпечення та обладнання:
-
Інструкційні картки;
-
Приклади задач;
-
Роздаткові матеріали: опорні конспекти “ Диференціювання функцій багатьох змінних”
-
Обчислювальні засоби: калькулятор.
Теоретичні відомості про правила диференціювання.
Функцією двох
змінних
,
називається функція, яка кожній парі
чисел
ставить у відповідність деяке число
.
Аналогічно означається функція трьох і більше невідомих.
Частинні похідні.
- це похідна по
функції
при фіксованому
- це похідна по
функції
при фіксованому
.
Частинні похідні
функції знаходять за звичайними правилами
диференціювання; потрібно
тільки при диференціюванні по
змінну
вважати сталою, а при диференціюванні
по
вважати
сталою.
Якщо
,
то
;
- частинні похідні першого порядку.
-
частина похідної другого порядку.
- мішані похідні
другого порядку.
Якщо мішані похідні неперервні, то вони рівні.
Задача №1. Знайти частинні похідні першого і другого порядків від заданих функцій:
а) z
= 8e-
3xy
+
7x – 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
б) z
= xsiny + 8xy
-
7x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Дослідження функцій z = f (x,y) на екстремум
При дослідженні функцій z = f (x,y) на екстремум (при умові, що вона двічі диференційована) користуються правилом:
1.Знаходяться частинні похідні першого порядку функції z = f (x,y) і розв’язують систему рівнянь:
Точки,
в яких частинні похідні дорівнюють
нулю, називаються стаціонарними точками.
Нехай одна з них
2.
Знаходять частинні похідні другого
порядку та мішані функції z
= f (x,y)
і обчислюють їх значення в точці
Позначимо
;
;
.
3. Обчислюють визначник
.
Якщо виявляється
, що
то функція z = f
(x,y)
в точці
має максимум при
і мінімум при
.
Якщо ж
то в точці
екстремуму
немає. Нарешті, якщо
то питання про екстремум в цій точці
залишається відкритим і вимагає
додаткового дослідження.
Задача 2. Знайти екстремум заданої функції
а)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
б)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Задача
3. Мале підприємство виробляє товари
А і В. Загальні щоденні витрати V
(в гривнях) на виробництво x
одиниць товару А та y
одиниць товару В відомі:
.
Визначити кількість одиниць товарів
А і В, яку потрібно виробляти, щоб загальні
витрати підприємства були мінімальними.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|