Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kody_i_shifry_yuliy_Cezar_Enigma_i_Internet_2007.pdf
Скачиваний:
172
Добавлен:
29.03.2016
Размер:
2.04 Mб
Скачать

14

определить неизменяемые части. Забегая вперед, можно привести в качестве примера шифрмашину "Энигма" (см. главу 9), которая содержала несколько колес; внутри этих колес были провода; распайка проводов внутри колес не менялась, но ежедневно изменялся порядок расположения колес внутри самой машины. Таким образом, распайка проводов являлась неизменяемой частью, а порядок колес - переменной. Взлом системы - это самая трудоемкая часть работы; она может продолжаться несколько недель или даже месяцев и потребовать применения математических методов, поиска и использования ошибок операторов и даже сведений, добытых шпионами.

После того, как определены все неизменяемые части системы, необходимо определить все переменные части (такие, как начальные положения колес в шифрмашине "Энигма", которые менялись для каждого сообщения). Это - задача вскрытия ключей сообщения. После ее решения сообщения будут дешифрованы.

Итак, взлом относится к системе шифрования в целом, а вскрытие ключей связано с дешифрованием отдельных сообщений.

Коды и шифры

Хотя слова код и шифр часто употребляются нестрого, мы проведем разграничение между этими понятиями. В коде часто встречающиеся элементы текста (которые могут состоять из одной или более букв, чисел или слов) обычно заменяются четырьмя или пятью буквами или числами, которые называются кодовыми группами и берутся из кодовой книги. Для особенно часто употребительных выражений или знаков кодовая книга может предлагать несколько кодовых групп. Это делается для того, чтобы криптограф мог варьировать ими с целью затруднить их идентификацию. Так, например, в четырехзначном цифровом коде для слова "понедельник" могут быть три альтернативные кодовые группы - к примеру, 1538, либо 2951, либо 7392. Коды мы рассмотрим в главе 6.

Коды - это частный случай системы шифрования, однако не все системы шифрования являются кодами. Мы будем использовать слово шифр по отношению к методам шифрования, в которых используются не кодовые книги, а шифрованный текст получается из исходного открытого текста согласно определенному правилу. В наше время вместо слова "правило" предпочитают пользоваться словом "алгоритм", особенно если речь идет о компьютерной программе. Различие между понятиями кода и шифра иногда не совсем четкое, особенно для простых систем. Пожалуй, можно считать, что шифр Юлия Цезаря использует одностраничную кодовую книгу, где каждой букве алфавита сопоставлена буква, стоящая в алфавите на три позиции далее. Однако для большинства систем, которые мы рассмотрим, это отличие будет довольно четким. Так, например, "Энигма", которую часто

15

ошибочно называют "кодом Энигма", безусловно является вовсе не кодом, а

шифрмашиной.

Исторически сложилось так, что вплоть до сравнительно недавнего времени в криптографии преобладали две основные идеи, и многие системы шифрования (в том числе почти все из описанных в первых одиннадцати главах этой книги) были основаны на одной из них или на обеих сразу. Первая идея сводилась к тому, чтобы перетасовать буквы алфавита (как обычно тасуют колоду карт) с целью получить нечто, что можно рассматривать как случайный порядок, перестановку или анаграмму букв. Вторая идея состоит в том, чтобы преобразовать буквы сообщения в числа (например, положив A=0, B=1, ..., Z=25), и затем прибавлять к ним (число за числом) другие числа, называемые гаммой, которые, в свою очередь, могут быть буквами, преобразованными в числа. Если в результате сложения получается число, большее чем 25, вычтем из него 26 (этот способ называется сложением по модулю 26). Результат затем преобразуется обратно

вбуквы. Если числа, прибавляемые к тексту, получены при помощи довольно трудно предсказуемого процесса, то зашифрованное таким способом сообщение очень трудно, или даже невозможно дешифровать без знания гаммы.

Любопытно отметить, что шифр Юлия Цезаря, каким бы незамысловатым он ни был, можно считать примером и того, и другого типа. В первом случае наше "тасование колоды" эквивалентно простому перемещению последних трех карт в начало колоды, так что все буквы смещаются вниз на три позиции, а X, Y и Z оказываются в начале. Во втором случае гаммой является число 3, повторенное бесконечное число раз. Нельзя себе и представить ничего "слабее" такого гаммы.

Перевод сообщения на другой язык, пожалуй, тоже можно было бы считать определенным видом шифрования с использованием кодовой книги (то есть словаря), но это всё-таки слишком вольное употребление слова код. Однако такой способ перевода на другой язык, когда за каждым словом лезут

всловарь как в кодовую книгу, определенно не следует рекомендовать. Это известно каждому, кто пытался изучать иностранный язык.*) С другой стороны, иногда вполне резонно воспользоваться малоизвестным языком для передачи сообщений, актуальность которых ограничена во времени. Рассказывают, например, что во время второй мировой войны в американских войсках в Тихом океане в качестве телефонистов иногда использовали солдат из индейского племени навахо, чтобы те передавали

*) Вспоминаю, как некий школьник писал сочинение на французском языке о том, как в средние века один путешественник приезжает ночью в гостиницу и стучится в дверь. В ответ он слышит "What Ho! Without." ("Какого чёрта! Убирайся!" - прим. перев.). Это выражение школьник перевел на французский дословно, подставив французские слова: "Que Ho! Sans." (получилось "Что за хо! Без." - прим. перев.).Учитель французского языка, прочитав это, потерял на мгновение дар речи, а потом заметил; "Вы, наверно, нашли эти слова в словаре, который раздают бесплатно с мешками сахара".

16

сообщения на своем родном языке, вполне обоснованно допуская, что даже в случае перехвата телефонных переговоров противник едва ли нашел бы в своих рядах человека, владеющего этим языком и способного понять содержание сообщения.

Другой способ скрыть содержание информации - использовать некую персональную скоропись. Этим методом еще в средние века пользовались авторы личных дневников - например, Самюэль Пепис (Samuel Pepys). Такие коды нетрудно вскрыть, если записей в дневнике достаточно. Регулярные повторения некоторых символов (к примеру, знаков, обозначающих дни недели) служат хорошим подспорьем для прочтения некоторых слов и выражений. Примером более основательного труда может послужить дешифрование древней микенской письменности, известной как "линейное письмо Б", где знаки соответствовали слогам древнегреческого языка; заслуга дешифрования этого вида письменности принадлежит Майклу Вентрису*) (см. [1.4]).

Широкое распространение компьютеров и возможность практического построения сложных электронных микросхем на кремниевых кристаллах произвели революцию как в криптографии, так и в криптоанализе. В результате некоторые современные системы шифрования основываются на передовых математических концепциях и требуют солидной вычислительной и электронной базы. Поэтому в докомпьютерную эпоху пользоваться ими было практически невозможно. Некоторые из них описаны в главах 12 и 13.

Оценка стойкости системы шифрования

Когда предлагается новая система шифрования, то очень важно оценить ее стойкость ко всем уже известным методам вскрытия в условиях, когда криптоаналитику известен тип используемой системы шифрования, но не во всех деталях. Оценивать стойкость системы шифрования можно для трёх разных ситуаций:

(1)криптоаналитику известны только шифрованные тексты;

(2)криптоаналитику известны шифрованные тексты и исходные открытые тексты к ним;

(3)криптоаналитику известны как шифрованные, так и открытые тексты, которые он сам подобрал.

Первый случай отражает "типичную" ситуацию: если в этих условиях систему шифрования можно вскрыть за короткое время, то пользоваться ею не следует. Вторая ситуация возникает, например, если одинаковые сообщения шифруются как по новой системе, так и по старой, которую

*) Линейное письмо Б (Linear B) - одна из наиболее древних систем греческой письменности. Обнаружено на глиняных табличках в Кноссе (о. Крит) и в Пилосе. Расшифрована Майклом Вентрисом (1922-1956), английским архитектором и лингвистом (прим. перев.).

17

криптоаналитик умеет читать. Такие ситуации, относящиеся к случаям серьёзного нарушения правил защиты информации, происходят весьма часто. Третья ситуация возникает, главным образом, когда криптограф, желая оценить стойкость созданной им системы, предлагает своим коллегам, играющим роль противника, вскрыть его шифр и позволяет им продиктовать ему тексты для зашифрования. Это - одна из стандартных процедур проверки новых систем. Очень интересной задачей для криптоаналитика - составить тексты так, чтобы после их зашифрования получить максимум информации о деталях системы. Структура этих сообщений зависит от того, как именно производится зашифрование. Вторая и третья ситуации могут также возникнуть, если у криптоаналитика есть шпион в организации криптографа: именно так обстояло дело в 30-х годах прошлого века, когда польские криптоаналитики получили открытые и шифрованные тексты сообщений, зашифрованных на немецкой шифрмашине "Энигма". Система шифрования, которую невозможно вскрыть даже в такой ситуации (3), является действительно стойким шифром. Это именно то, к чему стремится криптограф, и чего страшится криптоаналитик.

Коды, обнаруживающие и исправляющие ошибки

Другой класс кодов предназначен для обеспечения безошибочной передачи информации, а не для сокрытия ее содержания. Такие коды называются обнаруживающими и исправляющими ошибки, они являются предметом широкомасштабных математических исследований. Эти коды с самых первых дней существования компьютеров используются для защиты от ошибок в памяти и в данных, записанных на магнитную ленту. Самые первые версии этих кодов, такие, например, как коды Хэмминга, способны обнаружить и исправить единичную ошибку в шестиразрядном символе. В качестве более позднего примера можно привести код, который использовался на космическом корабле "Маринер" для передачи данных с Марса. Созданный с учетом возможного значительного искажения сигнала на его долгом пути к Земле, этот код был способен корректировать до семи ошибок в каждом 32-разрядном "слове". Простым примером кода другого уровня, обнаруживающего, но не исправляющего ошибки, является код ISBN (International Standard Book Number - Международный Стандартный Книжный Номер).Он состоит из десяти знаков (десяти цифр либо девяти цифр с буквой X на конце, которая обозначает число 10), и позволяет осуществить проверку на отсутствие ошибок в номере ISBN. Проверка выполняется следующим образом: вычислим сумму

(первая цифра) 1+(вторая цифра) 2+(третья цифра) 3+...+(десятая цифра) 10.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]