- •К русскому читателю
- •Как пользоваться книгой
- •Что такое математика?
- •Натуральные числа
- •Введение
- •Операции над целыми числами
- •Бесконечность системы натуральных чисел. Математическая индукция
- •Введение
- •Математическая числовая система
- •Введение
- •Рациональные числа
- •Несоизмеримые отрезки. Иррациональные числа, пределы
- •Рациональные числа и периодические десятичные дроби.
- •Замечания из области аналитической геометрии
- •Математический анализ бесконечного
- •Комплексные числа
- •Алгебраические и трансцендентные числа
- •Геометрические построения. Алгебра числовых полей
- •Введение
- •Основные геометрические построения
- •Неразрешимость трех классических проблем
- •Геометрические преобразования. Инверсия
- •Построения с помощью других инструментов. Построения Маскерони с помощью одного циркуля
- •Еще об инверсии и ее применениях
- •Проективная геометрия. Аксиоматика. Неевклидовы геометрии
- •Введение
- •Основные понятия
- •Двойное отношение
- •Параллельность и бесконечность
- •Применения
- •Аналитическое представление
- •Конические сечения и квадрики
- •Аксиоматика и нееклидова геометрия
- •Топология
- •Введение
- •Формула Эйлера для многогранников
- •Топологические свойства фигур
- •Другие примеры топологических теорем
- •Топологическая классификация поверхностей
- •Приложение
- •Функции и пределы
- •Введение
- •Независимое переменное и функция
- •Пределы
- •Пределы при непрерывном приближении
- •Точное определение непрерывности
- •Две основные теоремы о непрерывных функциях
- •Теорема Вейерштрасса об экстремальных значениях.
- •Некоторые применения теоремы Больцано
- •Максимумы и минимумы
- •Введение
- •Задачи из области элементарной геометрии
- •Общий принцип, которому подчинены экстремальные задачи
- •Стационарные точки и дифференциальное исчисление
- •Треугольник Шварца
- •Проблема Штейнера
- •Экстремумы и неравенства
- •Существование экстремума. Принцип Дирихле
- •Экстремальные проблемы элементарного содержания.
- •Изопериметрическая проблема
- •Вариационное исчисление
- •Вариационное исчисление. Принцип Ферма в оптике.
- •Экспериментальные решения задач на минимум. Опыты с мыльными пленками
- •Математический анализ
- •Введение
- •Интеграл
- •Примеры интегрирования. Интегрирование функции xr.
- •Производная
- •Техника дифференцирования
- •Обозначения Лейбница и «бесконечно малые»
- •Основная теорема анализа
- •Определение и свойства логарифма. Эйлерово число e.
- •Дифференциальные уравнения
- •Дифференциальное уравнение экспоненциальной функции. Радиоактивный распад. Закон роста. Сложные проценты.
- •Дополнительные замечания. Задачи и упражнения
- •Арифметика и алгебра
- •Аналитическая геометрия
- •Геометрические построения
- •Проективная и неевклидова геометрия
- •Топология
- •Функции, пределы, непрерывность
- •Максимумы и минимумы
- •Дифференциальное и интегральное исчисления
- •Техника интегрирования
- •О создании книги «Что такое математика?»
- •Рекомендуемая литература
- •Предметный указатель
Г Л А В А VIII
Математический анализ
Введение
Было бы слишком большим упрощением представлять себе, что математический анализ «изобретен» двумя людьми: Ньютоном и Лейбницем. В действительности он сложился в итоге долгой эволюции, которая не была ни начата, ни закончена Ньютоном или Лейбницем, но в которой они оба сыграли значительную роль. Несколько математиковэнтузиастов из разных стран Европы в XVII в. поставили своей целью продолжение математической работы Галилея и Кеплера. Эти люди поддерживали друг с другом тесное общение с помощью переписки и личных встреч. Внимание их было привлечено двумя центральными проблемами. Во-первых, проблемой касательной: определить касательную к данной кривой — основная задача дифференциального исчисления. Во-вторых, проблемой квадратуры: определить площадь, связанную с заданной кривой, — основная задача интегрального исчисления. Величайшей заслугой Ньютона и Лейбница является то, что они ясно осознали внутреннюю связь между этими двумя проблемами. И вот объединенный таким образом метод сделался в их руках мощным орудием науки. В значительной степени успех был обусловлен поистине чудесными символическими обозначениями, придуманными Лейбницем. Заслуги этого ученого нисколько не умаляются тем, что им руководили смутные неуловимые идеи, такие идеи, которые иной раз способны заменить недостаток точного понимания в умах, предпочитающих мистицизм ясности. Ньютон, деятель точной науки в подлинном смысле слова, был, по-видимому, главным образом вдохновляем своим учителем и предшественником по Кембриджу Барроу (1630–1677), Лейбниц же пришел к математике скорее со стороны. Блестящий знаток законов, дипломат и философ, один из самых деятельных и многосторонних умов своего века, он изучил новейшую математику в невероятно короткое время у Гюйгенса, физика по специальности, во время своего пребывания в Париже в дипломатической миссии. Вскоре после этого он опубликовал результаты, которые содержат в себе ядро современного анализа. Ньютон, открытия которого были сделаны много раньше, не был расположен
