Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kurant_Robbins_Chto_takoe_matematika.pdf
Скачиваний:
231
Добавлен:
26.03.2016
Размер:
5.82 Mб
Скачать

224

ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА

гл. IV

отрезок на прямой l.)

13)Дан параллелограмм ABCD. Через данную точку P проведите прямую, параллельную данной прямой l. (Указание: примените 10 к центру параллелограмма и воспользуйтесь 8.)

14)Дан параллелограмм; увеличьте данный отрезок в n раз. (Указание: примените 13 и 11.)

15)Дан параллелограмм; разделите данный отрезок на n равных частей.

16)Дан неподвижный круг с центром. Проведите через данную точку прямую, параллельную данной прямой. (Указание: примените 13.)

17)Дан неподвижный круг с центром. Увеличьте и уменьшите данный отрезок в n раз. (Указание: примените 13.)

18)Дан неподвижный круг с центром. Проведите через данную точку перпендикуляр к данной прямой. (Указание: воспользуйтесь прямоугольником, вписанным в данный круг, с двумя сторонами, параллельными данной прямой, и сведите к предшествующим задачам.)

19)Пересмотрев задачи 1–18, перечислите, какие основные задачи на построение можно выполнить с помощью двусторонней линейки (с двумя параллельными сторонами).

20)Две данные прямые l1 и l2 пересекаются в точке P , находящейся за пределами чертежа. Постройте прямую, соединяющую данную точку Q с точкой P . (Указание: дополните заданные элементы таким образом, чтобы получилась конфигурация плоскостной теоремы Дезарга, причем P и Q стали бы точками пересечения взаимно соответствующих сторон двух треугольников.)

21)Проведите прямую через две точки, между которыми расстояние больше, чем длина линейки. (Указание: примените 20.)

22)Прямые l1 и l2 пересекаются в точке P ; прямые m1 и m2 — в точке Q; обе точки P и Q — за пределами чертежа. Постройте ту часть прямой P Q, которая находится в пределах чертежа. (Указание: чтобы получить точку прямой P Q, постройте конфигурацию Дезарга таким образом, чтобы две стороны одного треугольника лежали соответственно на l1 и m1, две стороны другого — соответственно на l2 и m2).

23)Решите 20 с помощью теоремы Паскаля (стр. 209). (Указание: достройте конфигурацию Паскаля, рассматривая l1 и l2 как пару противоположных сторон шестиугольника, а Q — как точку пересечения другой пары противоположных сторон.)

*24) Каждая из двух прямых, целиком лежащих за пределами чертежа, задана двумя парами прямых линий, пересекающихся за пределами чертежа

вточках соответствующей прямой. Определите точку их пересечения с помощью двух прямых, пересекающихся за пределами чертежа.

§8. Конические сечения и квадрики

1.Элементарная метрическая геометрия конических сечений. До сих пор мы занимались только точками, прямыми, плоскостями и фигурами, составленными из конечного числа этих элементов. Если бы проективная геометрия ограничивалась рассмотрением таких «ли-

§ 8

КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ

225

нейных» фигур, она была бы сравнительно малоинтересна. Но фактом первостепенного значения является то обстоятельство, что проективная геометрия этим не ограничивается, а включает также обширную область конических сечений и их многомерных обобщений. Аполлониева метрическая трактовка конических сечений — эллипсов, гипербол и парабол — была одним из выдающихся успехов античной математики. Едва ли можно переоценить значение конических сечений как для чистой, так и для прикладной математики (например, орбиты планет и орбиты электронов в атоме водорода являются коническими сечениями). Не приходится удивляться тому, что классическая, возникшая в Древней Греции, теория конических сечений и в наши дни составляет необходимую часть математического образования. Но греческая геометрия никоим образом не сказала последнего слова. Через две тысячи лет были открыты замечательные проективные свойства конических сечений. Несмотря на простоту и изящество этих свойств, академическая инерция до настоящего времени служит препятствием их проникновению в школьное преподавание.

Начнем с того, что напомним метрические определения конических течений. Таких определений несколько, и их эквивалентность доказывается в элементарной геометрии. Наиболее распространенные определения связаны с фокусами кривых. Эллипс определяется как геометрическое место таких точек P на плоскости, что сумма их расстояний r1 и r2 от двух данных точек F1 и F2, называемых фокусами, имеет постоянное значение. (Если фокусы совпадают, кривая превращается в окружность.) Гипербола определяется как геометрическое место таких точек P на плоскости, что абсолютная величина разности r1 − r2 равно одной и той же постоянной величине. Парабола определяется как геометрическое место точек P , расстояние которых r от данной точки F равно расстоянию от данной прямой l.

В аналитической геометрии эти кривые представляются уравнениями второй степени относительно прямоугольных координат x, y. Нетрудно доказать, обратно, что всякая кривая, представляемая уравнением второго порядка

ax2 + by2 + cxy + dx + ey + f = 0,

есть или одно из трех названных выше конических сечений, или прямая линия, или пара прямых, или сводится к одной точке, или носит чисто мнимый характер. Как показывается во всяком курсе аналитической геометрии, для доказательства достаточно сделать надлежащим образом подобранную замену координатной системы.

Указанные выше определения конических сечений — существенно метрические, так как пользуются понятием расстояния. Но вот другое определение, устанавливающее место конических сечений в проективной

Рис. 94. Конические сечения

226

ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА

гл. IV

геометрии: конические сечения суть не что иное, как проекции окружности на плоскость. Если мы станем проектировать окружность C из некоторой точки O, то проектирующие прямые образуют бесконечный двойной конус, и пересечение этого конуса с плоскостью p будет проекцией окружности C. Кривая пересечения будет эллипсом или гиперболой,

смотря по тому, пересечет ли плоскость только одну «полость» конуса или обе. Возможен и промежуточный случай параболы, если плоскость p параллельна одной из проектирующих прямых, проведенных через O (рис. 94).

Проектирующий конус не обязан быть «прямым круговым» с вершиной O, расположенной вертикально над центром окружности C: он может быть и «наклонным». Но во всех случаях (как мы примем здесь, не приводя доказательства) в пересечении конуса с плоскостью получается кривая, уравнение которой — второй степени; и обратно, всякая кривая второго порядка может быть получена из окружности посредством проектирования. По этой именно причине кривые второго порядка иначе называются коническими сечениями.

Мы уже отметили, что если плоскость пересекает только одну «полость» прямого кругового конуса, то пересечение E представляет собой эллипс. Нетрудно установить, что кри-

вая E удовлетворяет обыкновенному фокальному определению эллипса, которое было сформулировано выше. Приведем очень простое и изящное доказательство, данное в 1822 г. бельгийским математиком Данделеном. Представим себе две сферы S1 и S2 (рис. 95), которые касаются плоскости сечения p соответственно в точках F1 и F2 и, кроме того, касаются конуса вдоль параллельных окружностей K1 и K2. Взяв произвольную точку P кривой E, проведем отрезки P F1 и P F2. Затем рассмотрим отрезок P O, соединяющий точку P с вершиной конуса O; этот отрезок целиком лежит на поверхности конуса; обозначим через Q1 и Q2 точки его пересечения с окружностями K1 и K2. Так как P F1 и P Q1 — две

§ 8

КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ

227

касательные, проведенные из точки P к одной и той же сфере S1, то

P F1 = P Q1.

Точно так же

P F2 = P Q2.

Складывая эти равенства, мы получаем:

P F1 + P F2 = P Q1 + P Q2.

Но P Q1 + P Q2 = Q1Q2 есть расстояние между параллельными окружностями K1 и K2 на поверхности конуса: оно не зависит от выбора точки P на кривой E. Отсюда следует, что, какова бы ни была точка P на E, имеет место равенство

P F1 + P F2 = const,

а это и есть фокальное определение эллипса. Итак, E есть эллипс, a F1 и F2 — его фокусы.

Упражнение. Если плоскость пересекает обе «полости» конуса, то кривая пересечения — гипербола. Докажите это утверждение, помещая по одной сфере в каждой из «полостей» конуса.

2. Проективные свойства конических сечений. Основываясь на положениях, установленных в предыдущем пункте, примем теперь временно следующее определение: коническое сечение есть проекция окружности на плоскость. Это определение в боль-

шей степени отвечает духу проективной геометрии, чем общепринятые фокаль- Рис. 95. Сферы Данделена

ные определения, так как эти последние всецело опираются на метрическое понятие расстояния. Новое определение тоже не вполне свободно от этого недостатка, поскольку «окружность» — также метрическое понятие. Но через мгновение мы придем к чисто проективному определению конических сечений.

Раз мы приняли, что коническое сечение есть не что иное, как проекция окружности (другими словами, под термином «коническое сечение» мы понимаем любую кривую, принадлежащую проективному

228

 

ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА

гл. IV

классу окружности; см. стр. 206), то отсюда сейчас же следует, что

всякое свойство окружности, инвариантное относительно проективных

 

 

 

 

 

преобразований,

должно так-

 

 

 

 

 

же принадлежать любому ко-

O

 

 

 

O

ническому сечению. Вспомним

 

 

 

 

 

теперь следующее хорошо из-

 

 

 

a

 

вестное — метрическое — свой-

a

 

d

b

c d

ство окружности: «вписанные в

b c

окружность углы, опирающие-

 

 

 

 

 

 

 

 

 

ся на одну и ту же дугу, рав-

 

 

 

 

 

ны между собой». На рис. 96

 

 

 

 

 

угол AOB, опирающийся на ду-

 

 

 

 

 

гу AB, не зависит от положения

 

 

 

 

D

точки O на окружности. Свя-

A

 

 

 

 

жем, дальше, указанное обсто-

 

 

 

 

 

 

B

 

C

 

ятельство с проективным поня-

Рис. 96. Двойное отношение на окружно-

тием двойного отношения, вво-

дя на окружности уже не две

 

 

 

сти

 

точки A, B, а четыре: A, B, C,

D. Четыре прямые a, b, c, d, соединяющие эти точки с точкой O на

окружности, имеют двойное отношение (a, b, c, d), зависящее только от

углов, опирающихся на дуги CA, CB, DA, DB. Соединяя A, B, C, D

скакой-нибудь другой точкой O0 на окружности, получим прямые a0, b0, c0, d0. Из отмеченного ранее свойства окружности вытекает, что две четверки прямых «конгруэнтны»1. Поэтому у них будет одно и то же двойное отношение: (a0b0c0d0) = (abcd). Спроектируем окружность на некоторое коническое сечение K: тогда на K получится четверка точек, которые мы снова обозначим через A, B, C, D, две точки O и O0 и две четверки прямых a, b, c, d и a0, b0, c0, d0. Эти две четверки прямых уже не будут конгруэнтны, так как углы при проектировании, вообще говоря, не сохраняются. Но так как двойное отношение при проектировании не изменяется, то равенство (abcd) = (a0b0c0d0) по-прежнему имеет место. Мы пришли, таким образом, к следующей основной теореме: если четыре точки конического сечения K, например A, B, C, D, соединены

спятой точкой O того же сечения прямыми a, b, c, d, то двойное отношение (abcd) не зависит от положения O на кривой K (рис. 97).

Это — замечательный результат. Как нам уже известно, если четыре точки A, B, C, D взяты на прямой, то двойное отношение, составленное из соединяющих эти точки с пятой точкой O прямых, не зависит от

1Четверка прямых a, b, c, d считается конгруэнтной другой четверке a0, b0, c0, d0, если углы между каждой парой прямых в первой четверке равны как по величине, так и по направлению отсчета углам между соответствующими прямыми второй четверки.

§ 8

КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ

 

229

выбора этой пятой точки. Это — исходное положение, лежащее в основе

проективной геометрии. Теперь мы узнали, что аналогичное утвержде-

ние справедливо и относительно четырех точек, взятых на некотором

коническом сечении K, однако с существенным ограничением: пятая

точка O уже не может свободно двигаться по всей плоскости, а может

только перемещаться по коническому сечению K.

 

 

 

Не представляет особого труда доказать и обратную теорему в следу-

ющей форме: если на кривой K имеются две точки O и O0, обладающие

тем свойством, что какова бы ни была четверка точек A, B, C, D на

кривой K, двойные отношения, составленные из прямых, соединяющих

эти точки с O, и из прямых, соединяющих эти точки с O0, равны

между собой, то кривая K есть коническое сечение (а уж тогда, по

прямой теореме, двойное отношение, составленное из прямых, соеди-

няющих четыре данные точки с произвольной точкой O00 на K, будет

иметь одно и то же постоянное значение). Но доказательства мы здесь

приводить не будем.

 

 

 

 

 

 

 

 

Изложенные проективные свойства конических сечений наводят на

мысль об общем методе точечного построения этих кривых. Условимся

под пучком прямых понимать совокупность всех прямых плоскости,

проходящих через данную точ-

 

 

 

 

 

 

ку O. Рассмотрим пучки прямых,

 

O

 

 

 

O

проходящих через две

точки O

 

 

 

 

 

 

 

 

a

 

и

O0, расположенные

на кони-

 

 

 

 

 

a

 

 

 

 

 

ческом сечении K. Между пря-

b

c

d

b c

 

 

 

 

 

 

d

мыми пучка O и прямыми пуч-

 

 

 

 

 

 

 

 

 

 

 

ка

O0 можно установить взаим-

 

 

 

 

 

 

но однозначное соответствие, со-

A

 

 

 

 

 

 

 

 

 

 

 

поставляя прямой a из первого

B

 

 

 

 

D

пучка прямую a0 из второго вся-

 

 

 

 

C

 

кий раз, как a и a0 встречаются

Рис. 97. Двойное отношение на эллипсе

в некоторой точке A кривой K.

Тогда любая четверка прямых a,

 

 

 

 

 

 

b, c, d из пучка O будет иметь то же двойное отношение, что и со-

ответствующая четверка a0, b0, c0, d0 из пучка O0. Всякое взаимно од-

нозначное соответствие между двумя пучками прямых, обладающее

этим последним свойством, называется проективным соответствием.

(Это определение двойственно по отношению к определению проектив-

ного соответствия между точками на двух прямых, см. стр. 198198.)

Пользуясь этим определением, можно теперь утверждать: коническое

сечение K есть геометрическое место точек пересечения взаимно со-

ответствующих прямых из двух пучков, находящихся в проективном

соответствии. Полученная теорема подводит фундамент под следу-

ющее чисто проективное определение конических сечений: коническим

230

ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА

гл. IV

сечением называется геометрическое место точек пересечения взаимно соответствующих прямых из двух пучков, находящихся в проективном соответствии1. Как ни соблазнительно проникнуть в глубь теории конических сечений, строящейся на таком определении, однако мы вынуждены ограничиться немногими замечаниями по этому поводу.

Пары пучков, находящихся в проективном соответствии, можно получить следующим образом. Спроектируем все точки P прямой линии l из двух разных центров O и O00 и установим между проектирующими пучками взаимно однозначное соответствие, сопоставляя друг другу те прямые, которые пересекаются на прямой l. Этого достаточно, чтобы полученные пучки находились в проективном соответствии. Затем возьмем пучок O00 и перенесем его «как нечто твердое» в произвольное положение O0. Что новый пучок O0 будет находиться в проективном соответствии с пучком O, это совершенно очевидно. Но замечательно то, что любое проективное соответствие между двумя пучками можно

O

 

O

 

 

 

 

 

a

 

 

d

b

 

 

c

a

b c

 

 

 

d

Рис. 98. К построению проективных пучков прямых

получить именно таким образом. (Это обстоятельство двойственно по отношению к упражнению 1 на стр. 199.) Если пучки O и O0 конгруэнтны, получается окружность. Если углы между соответствующими лучами в двух пучках равны, но отсчитываются в противоположных направлениях, то получается равносторонняя гипербола (рис. 99).

Следует еще заметить, что указанное определение конического сечения может, в частности, дать и прямую линию, как это показано на рис. 98. В этом случае прямая OO00 соответствует сама себе, и все ее точки должны быть рассматриваемы как принадлежащие искомому геометрическому месту. Таким образом, коническое сечение вырождается в

1Это геометрическое место, при известных обстоятельствах, может вырождаться в прямую линию; см. рис. 98.

§ 8

КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ

231

пару прямых: это обстоятельство вполне согласуется с тем фактом, что существуют сечения конуса, состоящие из двух прямых (если секущая плоскость проходит через вершину конуса).

98 O 7

10

 

 

6

11

 

 

5

 

 

 

12

 

 

4

 

 

 

13

 

 

3

14

 

 

2

 

 

 

 

 

 

1

15

 

 

 

16

 

 

24

 

 

 

17

 

 

23

 

 

 

18

 

 

22

19

O

20

21

 

 

Рис. 99. Образование окружности и равносторонней гиперболы с помощью проективных пучков

Упражнения. 1) Вычертите эллипсы, гиперболы и параболы с помощью проективных пучков. (Читателю настойчиво рекомендуется экспериментировать с подобного рода построениями. Это в высшей степени способствует пониманию сути дела.)

2) Дано пять точек O, O0, A, B, C некоторого конического сечения K. Найдите точки пересечения D произвольной прямой d пучка O с кривой K. (Указание: через O проведите прямые OA, OB, OC и назовите их a, b, c. Через O0 проведите прямые O0A, O0B, O0C и назовите их a0, b0, c0. Проведите через O прямую d и постройте такую прямую d0 пучка O0, что (abcd) = (a0b0c0d0). Тогда точка пересечения d и d0 принадлежит кривой K.)

3. Конические сечения как «линейчатые кривые». Понятие касательной к коническому сечению принадлежит проективной геометрии, так как касательная к коническому сечению есть прямая, имеющая с самой кривой только одну общую точку, а это — свойство, сохраняющееся при проектировании. Проективные свойства касательных к коническим сечениям основываются на следующей теореме:

Двойное отношение точек пересечения четырех фиксированных касательных к коническому сечению с произвольной пятой касательной

Рис. 100. Окружность как совокупность касательных

232

ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА

гл. IV

не зависит от выбора этой пятой касательной. Доказательство этой теоремы весьма

просто. Так как любое коническое сечение есть проекция окружности и так как в теореме идет речь только о таких свойствах, которые инвариантны относительно проектирования, то, чтобы доказать теорему в общем случае, достаточно доказать ее для частного случая окружности.

Для этого же частного случая теорема доказывается средствами элементарной геометрии. Пусть P , Q, R, S — четыре точки на окружности K; a, b, c, d — касательные в этих точках; T — еще какаянибудь точка на окружности, o — касательная в ней; пусть, далее, A, B, C, D —

точки пересечения касательной o с касательными a, b, c, d. Если M —

центр окружности, то, очевидно, T MA = 12 T MP , и последнее вы-

ражение представляет угол, вписанный в K, опирающийся на дугу T P . Таким же образом T MB представляет угол, вписанный в K и опирающийся на дугу T Q. Следовательно,

AMB = 12 ^ P Q,

где 12 ^ P Q обозначает угол, вписанный в K и опирающийся на ду-

гу P Q. Отсюда видно, что A, B, C, D проектируются из M четырьмя прямыми, углы между которыми имеют величины, зависящие только от положения точек P , Q, R, S. Ho тогда двойное отношение (ABCD) зависит только от четырех касательных a, b, c, d, но не от касательной o. Как раз это и нужно было установить.

A

o

B C

 

D

 

 

 

d

T

 

 

c

S

 

 

 

 

 

 

R

 

 

b

M

Q

a

P

Рис. 101. Свойство касательной к окружности

§ 8

КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ

233

В предыдущем пункте мы имели случай убедиться, что коническое сечение может быть построено «по точкам», если станем отмечать точки пересечения взаимно соответствующих прямых двух пучков, между которыми установлено проективное соответствие. Только что доказанная теорема дает нам возможность сформулировать двойственную теорему. Возьмем две касательные a и a0 к коническому сечению K. Третья касательная t пусть пересекает a и a0 соответственно в точках A и A0. Если t будет перемещаться вдоль кривой, то установится соответствие

A ←→ A0

между точками a и точками a0. Это соответствие будет проективным, так как по доказанной теореме произвольная четверка точек на a будет непременно иметь то же двойное отношение, что и соответствующая четверка точек на a0. Отсюда следует, что коническое сечение K, рас-

D

C

B

A

a

a

C

D

A

B

Рис. 102. Проективные ряды точек на двух касательных к эллипсу

сматриваемое как «совокупность своих касательных», «состоит» из прямых, соединяющих взаимно соответствующие точки двух точечных рядов1 на a и на a0, находящихся в проективном соответствии. Указанное обстоятельство позволяет ввести новое определение конических сечений, рассматриваемых на этот раз как «линейчатые кривые». Сравним это определение с прежним проективным определением конического сече-

1Совокупность точек на прямой называется точечным рядом. Это понятие двойственно по отношению к пучку прямых.

234

ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА

гл. IV

ния, данным в предыдущем пункте:

I

Коническое сечение, рассматриваемое как совокупность точек, состоит из точек пересечения взаимно соответствующих прямых в двух проективных

пучках.

II

Коническое сечение, рассматриваемое как «совокупность прямых», состоит из прямых, соединяющих взаимно соответствующие точки в двух проективных

рядах.

Если мы станем считать касательную к коническому сечению в некоторой его точке двойственным элементом по отношению к самой точке и условимся, кроме того, «линейчатую кривую» (образованную совокупностью касательных) на основе двойственности сопоставлять «точечной кривой» (образованной совокупностью точек), то предыдущие формулировки будут безупречны с точки зрения принципа двойственности. При «переводе» одной формулировки в другую с заменой всех понятий соответствующими двойственными понятиями, «коническое сечение» остается неизменным; но в одном случае оно мыслится как «точечная кривая», определяемая своими точками, в другом — как «линейчатая кривая», определяемая своими касательными.

Из предыдущего вытекает важное следствие: принцип двойственности, первоначально установленный в проективной геометрии плоскости только для точек и прямых, оказывается, может быть распространен и на конические сечения. Если в формулировке любой теоремы, касающейся точек, прямых и конических сечений, заменить каждый элемент ему двойственным (не упуская из виду, что точке конического сечения должна быть сопоставляема касательная к этому коническому сечению),

то в результате также получится справедливая теорема. Пример действия этого принципа мы встретим в пункте 4 настоящего параграфа.

Построение конических сечений, понимаемых как «линейчатые кривые», показано на рис. 103–104. В частности, если в двух проективных точечных рядах бесконечно удаленные точки соответствуют взаимно одна другой (так будет непременно, если точечные ряды конгруэнтны или подобны1), то коническое сечение будет параболой; справедливо и обратное утверждение.

Упражнение. Докажите обратную теорему: на двух неподвижных касательных к параболе движущаяся касательная к параболе определяет два подобных точечных ряда.

4. Теоремы Паскаля и Брианшона для общего случая произвольных конических сечений. Одной из лучших иллюстраций

1Что такое «конгруэнтные» и «подобные» точечные ряды, достаточно понятно без объяснений.

§ 8

КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ

235

Рис. 103. Парабола, определенная конгруэнтными точечными рядами

Рис. 104. Парабола, определенная подобными точечными рядами

236

ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА

гл. IV

принципа двойственности применительно к коническим сечениям является взаимоотношение между общими теоремами Паскаля и Брианшона. Первая из них была открыта в 1640 г., вторая — в 1806 г. И, однако, каждая из них есть непосредственное следствие другой, так как всякая теорема, формулировка которой упоминает только конические сечения, прямые и точки, непременно остается справедливой при изменении формулировки по принципу двойственности.

Теоремы, доказанные в § 5 под теми же наименованиями, представляют собой «случаи вырождения» следующих более общих теорем.

Теорема Паскаля. Противоположные стороны шестиугольника, вписанного в коническое сечение, пересекаются в трех коллинеарных точках.

2

1

3

4

5

6

Рис. 105. Общая конфигурация Паскаля. Показаны два случая: один для шестиугольника 1, 2, 3, 4, 5, 6, другой для шестиугольника 1, 3, 5, 2, 6, 4

Теорема Брианшона. Три диагонали, соединяющее противоположные вершины шестиугольника, описанного около конического сечения, конкуррентны.

Обе теоремы имеют очевидное проективное содержание. Их двойственность бросается в глаза, если сформулировать их следующим образом:

Теорема Паскаля. Дано шесть точек 1, 2, 3, 4, 5, 6 на коническом сечении. Соединим последовательные точки прямыми (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1). Отметим точки пересечения прямых (1, 2) и (4, 5), (2, 3) и (5, 6), (3, 4) и (6, 1). Эти три точки лежат на одной прямой.

§ 8

КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ

237

Теорема Брианшона. Дано шесть касательных 1, 2, 3, 4, 5, 6 к коническому сечению. Последовательные касательные пересекаются в точках (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1). Проведем прямые, соединяющие точки (1, 2) и (4, 5), (2, 3) и (5, 6), (3, 4) и (6, 1). Эти три прямые проходят через одну точку.

 

2

 

 

3

Y

 

1

 

 

 

 

C

4

F

 

 

 

 

6

 

 

5

 

 

A

X

 

B

 

D

E

Рис. 106. Общая конфигурация Брианшо-

Рис. 107. Доказательство теоре-

на. Показаны только два случая

мы Паскаля

Доказательства проводятся с помощью специализации такого же рода, как и в рассмотренных раньше случаях вырождения. Докажем теорему Паскаля. Пусть A, B, C, D, E, F — вершины шестиугольника, вписанного в коническое сечение K. Посредством проектирования можно сделать параллельными прямые AB и ED, F A и CD (и тогда получится конфигурация, изображенная на рис. 107; ради удобства шестиугольник на чертеже взят самопересекающимся, хотя в этом нет никакой необходимости.) Нам нужно теперь доказать только одно: что прямая CB параллельна прямой F E; другими словами, что противоположные стороны пересекаются на бесконечно удаленной прямой. Для доказательства рассмотрим четверку точек F , A, B, D, которая, как мы знаем, при проектировании из любой точки K сохраняет одно и то же двойное отношение, скажем, k. Станем проектировать из точки C на прямую AF ; получим четверку точек F , A, Y , ∞, причем

k = (F , A, Y , ∞) = YY FA

(см. стр. 205).

Станем теперь проектировать из точки E на прямую BA; получим

238

ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА

гл. IV

 

 

 

 

 

 

 

 

 

 

Рис. 108. Построение прямых, пересекающих три данные прямые общего положения

четверку точек X, A, B, ∞, причем

k = (X, A, B, ∞) = BXBA .

Итак,

BXBA = YY FA ,

что как раз и означает, что Y B k F X. Доказательство теоремы Паскаля закончено.

Теорема Брианшона, как было указано, следует из теоремы Паскаля по принципу двойственности. Но ее можно доказать и непосредственно — путем рассуждения, двойственного относительно только что приведенного. Провести это рассуждение во всех деталях будет прекрасным упражнением для читателя.

5. Гиперболоид. В трехмерном пространстве мы встречаемся с так называемыми квадриками (поверхностями второго порядка), которые в данном случае играют ту же роль, что «конические сечения» (кривые второго порядка) на плоскости.

Простейшими из них являются сфера и эллипсоид. Квадрики более разнообразны, чем конические сечения, и изучение их связано с б´ольшими трудностями. Мы рассмотрим бегло и без доказательств одну из самых интересных поверхностей этого типа: так называемый связный (или однополостный) гиперболоид.

Эта поверхность может быть получена следующим образом. Возьмем в пространстве три прямые l1, l2, l3, находящиеся в общем положении. Последнее означает, что никакие две из них не параллельны и все три

Рис. 109. Гиперболоид

§ 8 КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ 239

не являются параллельными одной и той же плоскости. Может показаться удивительным, что существует бесконечное множество прямых в пространстве, из которых каждая пересекается со всеми тремя данными прямыми. Убедимся в этом.

Пусть p — произвольная плоскость, содержащая прямую l1; эта плоскость пересекает прямые l2 и l3 в двух точках, и прямая m, проведенная через эти две точки, очевидно, пересекается со всеми прямыми l1, l2 и l3. Когда плоскость p вращается около прямой l1, прямая m будет изменять свое положение, однако все время продолжая пересекаться с тремя данными прямыми. При движении m возникает поверхность, неограниченно уходящая в бесконечность, которая и называется однополостным гиперболоидом. Она содержит бесконечное множество прямых типа m. Любые три такие прямые, скажем m1, m2 и m3, также будут находиться в общем положении, и те прямые в пространстве, которые будут пересекаться с тремя прямыми m1, m2 и m3 одновременно,

также будут лежать на рассматриваемой поверхности. Отсюда следует основное свойство гиперболоида: он составляется из двух различных семейств прямых линий; каждые три линии одного и того же семейства находятся в общем положении и каждая прямая одного семейства пересекается со всеми прямыми другого.

Важное проективное свойство гиперболоида заключается в том, что двойное отношение тех четырех точек, в которых данная четверка прямых одного семейства пересекается с некоторой прямой второго семейства, не зависит от выбора этой последней. Это утверждение вытекает из метода построения гиперболоида с помощью вращающейся плоскости, и читатель может убедиться в его справедливости и качестве упражнения.

Отметим еще одно замечательное свойство гиперболоида: хотя он содержит два семейства прямых линий, но существование этих прямых не препятствует изгибанию поверхности — не делает ее жесткой. Если устроить модель гиперболоида из стержней, способных свободно вращаться около точек взаимных пересечений, то поверхность в целом

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]