Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаба№2 / _metodyi.doc
Скачиваний:
125
Добавлен:
25.03.2016
Размер:
1.11 Mб
Скачать
    1. Условия применимости метода простых итераций.

Рассмотрим отображение n-мерного евклидова пространства в себя, заданное формулой: Y=AX+B, где А- матрица размерности nхn, X,B,Y Rn. Главный вопрос применимости метода заключается в следующем: в каком случае это отображение будет сжимающим, т.е. существует некоторое число q, 0<q<1, такое что при всех х1 и х2 справедливо:

Что надо потребовать от матрицы А, чтобы выполнялось это условие?

Приведем несколько достаточных условий. Для этого вспомним, что основными нормами в пространстве Rn являются

1. , где x=(x1,x2,...,xn)

2.

3. , где i=1,2,...n

Рассмотрим в исходном пространстве векторов норму и оценим норму оператора преобразования Y=AX+B через элементы матрицы А.

Оценивать норму мы будем в два этапа: 1. Сначала оценим i-ую компоненту вектора y1-y2.

2. Затем оценим норму всего вектора y1-y2.

Возьмем i-ую компоненту вектора y1-y2 и оценим сверху эту разность по модулю.

Далее уже легко оценить и норму разности векторов y1-y2:

, где максимум берется при всех i=1,2,…,n

Следствие. Если =мах <1, (i=1,2,…,n), то отображение Y=AX+B сжимающее.

Задача. Доказать, что для двух других норм в исходном пространстве получим:

, и , где максимум берется при всех j=1,2,…,n.

Если при этом хотя бы одно из этих чисел меньше 1, то отображение сжимающее.

    1. Описание метода простых итераций.

Вернемся теперь к решению системы линейных уравнений, преобразованной к виду (9.1).

Решить систему - значит найти неподвижную точку Х такую, что если подставить ее координаты в правые части уравнений (9.1), то получим ту же точку Х. Для поиска неподвижной точки сжимающего отображения мы, как обычно, построим рекуррентную последовательность векторов по следующему правилу:

Х0-произвольный, Хk+1 = А Хk + В (9.2)

После построения последовательности векторов посмотрим, сходится ли построенная последовательность. Если да, то она сходится обязательно к решению системы (9.1).

Упражнение 9.3. Докажите.

Сходится последовательность или нет – зависит от матрицы А и начального вектора Х0.

ТЕОРЕМА. Пусть задана система линейных уравнений (9.1) и построена рекуррентная последовательность векторов по правилу (9.2). Если для матрицы А хотя бы одно из чисел q1,q2,q меньше 1, то мы можем утверждать, что последовательность векторов, которую мы построили, обязательно сходится к решению со скоростью геометрической прогрессии со знаменателем q.

Доказательство опирается на принцип сжимающих отображений и аналогично доказательству в одномерном случае, изложенному в самом начале работы.

Упражнение 9.4. Проведите самостоятельно доказательство теоремы.

Из теоремы вытекает соответствующий метод решения системы. Заметим, что при выполнении ограничений на элементы матрицы А последовательность построенных по правилу (9.2) векторов сходится к решению независимо от выбора вектора Х0, но обычно в качестве Х0 выбирают вектор В. Это можно объяснить тем, что если взять Х0=0, то на следующем шаге получится вектор В, т.е. он как бы лежит на пути от 0 к решению системы. Повторим, что у метода итераций есть преимущество перед всеми другими методами: это устойчивый метод.

Соседние файлы в папке Лаба№2