- •1. Экологические аспекты ремонтного производства автомобилей. Пути их решения.
- •2. Восстановление деталей плазменной наплавкой.
- •3. Восстановление деталей электродуговой металлизацией.
- •4. Применение электромеханической обработки при восстановлении деталей.
- •5. Понятие о производственном и технологическом процессе ремонта автомобилей. Общая схема технологического процесса ремонта.
- •6. Ультразвуковая дефектоскопия деталей.
- •7. Управление качеством ремонта автомобилей на предприятии.
- •8. Магнитная дефектоскопия деталей.
- •9. Подготовка автомобилей к ремонту. Предремонтное диагностирование, его задачи и содержание.
- •10. Сущность и особенности применения электрошлаковой сварки и наплавки.
- •11. Восстановление деталей газопламенной металлизацией.
- •12. Проектирование технологических процессов восстановления деталей и ремонта сборочных единиц.
- •13. Восстановление коленчатых валов.
- •14. Особенности авторемонтного производства.
- •15. Классификация дефектов. Методы, средства и последовательность дефектации.
- •16. Восстановление распредвалов.
- •17. Восстановление шатунов.
- •18. Восстановление головки блока.
- •19. Технологические процессы разборки автомобилей и их агрегатов. Применяемое оборудование и оснастка.
- •20. Особенности механической обработки деталей при ремонте.
- •21. Дефектоскопия. Методы дефектоскопии.
- •22. Технология ремонта резьбовых осаждений.
- •23. Комплектование деталей при ремонте. Сущность и задачи, технические требования на комплектования деталей.
- •24. Ремонт гильз цилиндров.
- •25. Балансировка деталей и сборочных единиц при ремонте
- •26. Технология заделки трещин в корпусных деталях фигурными вставками
- •27. Сборка объектов ремонта. Последовательность и правило сборки. Механизация и автоматизация сборочных работ.
- •28. Применение пойки в ремонтном производстве. Виды пойки, типы припоев и флюсов.
- •29. Назначение и сущность обкатки агрегатов и машин. Методы ускорения обкатки.
- •30. Способы и технологии нанесения полимерных материалов, их сущность, особенности и области применения.
- •31. Испытание отремонтированных машин. Влияние технологи сборки, обкатки и испытаний на качество отремонтированных автомобилей.
- •32. Восстановление деталей полимерными материалами. Виды полимерных материалов, применяемых при ремонте машин.
- •33. Методы восстановления посадок деталей при ремонте автомобилей
- •34. Восстановление деталей железнением
- •35. Применение газовой сварки при ремонте. Сварочные материалы для газовой сварке.
- •36. Технология нанесения покрытий напылением. Пути повышения сцепляемости покрытий, свойства нанесенных покрытий.
- •37. Восстановление деталей автоматической наплавкой под флюсом.
- •38. Восстановление деталей детонационным напылением.
- •39. Восстановление деталей вибродуговой наплавкой.
- •40. Особенности удаления старых лакокрасочных покрытий, нагара, накипи, продуктов коррозии.
- •41. Значение и задачи очистки при ремонте автомобилей. Виды и характеристики загрязнений.
- •42. Восстановление и ремонт шестерен.
- •43. Классификация способов очистки. Струйная, погружная и специальные способы очистки. Применяемое оборудование.
- •44.Восстановление деталей намораживанием.
- •45. Методы интенсификации и оптимизации технологического процесса очистки. Решение вопросов экологии при очистке.
- •46.Восстановление деталей пластическим деформированием.
- •47.Основные критерии и порядок выбора рационального способа восстановления.
- •48. Ремонт стальных деталей ручной дуговой сваркой и наплавкой. Выбор электродов. Сварочное оборудование.
- •49.Электролитическое нанесение металлов, сущность процесса. Способы нанесения покрытий.
- •50. Восстановление деталей электроконтактной приваркой ленты, проволоки, порошков.
- •51.Виды, методы и система ремонта автомобилей.
- •52. Ремонт деталей с применением свертных втулок.
- •53. Характеристика моющих средств, применяемых в ремонтном производстве.
- •54. Восстановление корпуса коробки передач.
- •55. Ремонт деталей методом ремонтных размеров.
- •56.Физико-механические основы моющего средства.
- •57.Механизация и автоматизация технологических процессов.
- •58. Сварка деталей из чугуна.
- •59.Восстановление деталей хромированием.
- •60.Сварка деталей из аллюминиевых сплавов.
59.Восстановление деталей хромированием.
Хромирование позволяет получать мелкозернистые покрытия микротвердостыо 4,0... 12,0 ГПа, обладающие низким коэффициентом трения и высокой сцепляемостью с основой. Хром химически стоек против воздействия многих кислот и щелочей, жароустойчив. Высокие твердость, жаростойкость, химическая стойкость и низкий коэффициент трения хрома обеспечивают деталям высокую износостойкость даже в тяжелых условиях эксплуатации, превышающую в 2...5 раз износостойкость закаленной стали. Наибольшей износостойкостью хромовое покрытие обладает при твердости 7,0...9,2 ГПа. В то же время хромирование - энергоемкий, дорогой, малопроизводительный процесс, применять который нужно в строго необходимых случаях. Хромирование используют для следующих целей: защитно-декоративное хромирование деталей автомобилей, велосипедов, мотоциклов, вагонов и т. д.;
• повышение износостойкости и срока службы пресс-форм, штампов, измерительных и режущих инструментов, трущихся поверхностей деталей машин (поршневые кольца, штоки гидроцилиндров) и др.;
• восстановление малоизношенных ответственных деталей;
• повышение отражательной способности при изготовлении зеркал, отражателей, рефлекторов.
Хромирование отличается от других гальванических процессов. Его особенности следующие:
1. При хромировании главным компонентом электролита служит хромовый ангидрид (СгО;,), образующий при растворении в воде хромовую кислоту (Cr03+H 2 0=HiCr0 4 ). При других процессах главный компонент
- соль осаждаемого металла. Хром осаждается лишь при наличии в электролите определенного количества посторонних анионов, чаще всего сульфатов. Хром в электролите находится в шести валентном состоя
нии, и на катоде разряжается многовалентный комплексный хромовый анион. Механизм осаждения хрома на катоде весьма сложен и еще недостаточно изучен.
2. При хромировании большая часть тока расходуется на побочные процессы, в том числе на неполное восстановление хромат-ионов и обильное выделение водорода, в результате чего выход хрома по току мал
(15...65%). С увеличением концентрации СгОз выход хрома по току увеличивается, а повышение температуры электролита приводит к уменьшению, тогда как при осаждении других металлов эти закономерности не изменяются.
3. Хромовый анод растворяется при электролизе с анодным выходом по току, в 7...8 раз превышающим выход по току на катоде. В результате концентрация вредных для процесса трехвалентных ионов хрома в электролите непрерывно возрастает. Поэтому при хромировании применяют нерастворимые аноды, изготовленные из свинца или из сплава свинца с 6% сурьмы. Электролит постоянно обедняется, и его необходимо периодически корректировать, добавляя в него хромовый ангидрид. При хромировании наибольшее применение получили простые сульфатные электролиты Л° 1, 2 и 3, состоящие из хромового ангидрида, серной кислоты и воды.
60.Сварка деталей из аллюминиевых сплавов.
Сварка деталей из алюминия и его сплавов затрудняется по следующим причинам:
• очень плохая сплавляемость металла из-за образования на его поверхности тугоплавкой оксидной пленки А1 2 0з;
• при нагреве до 400...450°С алюминий сильно теряет свою прочность и деталь может разрушиться от легкого удара или от действия собственной массы;
• металл, минуя пластическое состояние, при нагреве сразу переходит из твердого в жидкое состояние;
• коэффициент линейного расширения алюминия в 2, а теплопроводность в 3 раза больше, чем у стали;
• поглощение растворенным металлом воздуха способствует образованию пор.
Наиболее эффективные средства для удаления оксидной пленки - химическое взаимодействие с элементами из группы галогенов. В природе известно много соединений, содержащих галогены, но для использования в качестве сварочного флюса они должны иметь невысокую (600...700°С) температуру плавления. Этим требованиям удовлетворяют соли щелочных и шелочно-земельных металлов (NaF, NaCl, KC1, Na 3 AIFe 6 , BaCl 2 , CaF 2 и др.). У сварки с применением флюса много положительных сторон. Однако ее нельзя применять в различных пространственных положениях. Кроме того, коррозионная стойкость шва снижается из-за остатков флюса на его поверхности.
Алюминий и его сплавы сваривают дуговой, аргонодуговой и газовой сваркой. Поверхности обезжиривают растворителями и очищают от нагара,масла и грязи не более чем за 2...4 ч до сварки.Дуговую сварку выполняют угольными или плавящимися электродами.Сварку угольными электродами ведут на постоянном токе прямой полярности. Детали толщиной до 2 мм сваривают без присадочного металла и разделки кромок, а свыше 2 мм и с зазором, составляющим 0,5...0,7 от толщины свариваемой детали, - с разделкой кромок. Оксидную пленку удаляют с помощью флюса АФ-4А.
Сварку плавящимися электродами проводят короткой дугой при обратной полярности из расчета не более 40 А на I мм диаметра электрода со скоростью 0,4...0,6 м/мин. Перед заваркой трещину разделывают в виде канавки по всей длине.
Аргонодуговую сварку выполняют неплавящимся вольфрамовым электродом на установках УД Г-301 и УДГ-501. В зависимости от толщины стенки свариваемой детали выбирают диаметр электрода и силу тока. Чем тоньше стенки, тем меньше диаметр электрода и сила тока.
Особые требования предъявляют к технике сварки. Угол между присадочным материалом и вольфрамовым электродом должен составлять примерно 90°.Размеры сварочной ванны должны быть минимальными. Сварку стенок толщиной до 10 мм обычно ведут справа налево, т. е. левым способом, при котором снижается перегрев металла. Дуга должна быть как можно короче.
Режим сварки при толщине стенки 4...6 мм: диаметр присадочного материала 3...4 мм; сила тока 150.-270 А; напряжение 18...20 В; расход аргона 7...10 л/мин. При добавлении к аргону 10...12% (по объему) углекислого газа и 2...3% кислорода повышается устойчивость горения дуги и улучшается формирование металла.Режим наплавки при диаметре электродной проволоки 0,8... 1 мм: сила тока 70...90 А; напряжение 17... 19 В; скорость подачи проволоки 160...200 м/ч; шаг наплавки 1,5...1,8 м/об; толщина наплавленного слоя за один проход 0,8... 1,0 мм; расход аргона 2...3 л/мин. Газовую сварку ацетиленокислородным нейтральным пламенем выполняют с помощью флюсов АФ-4А, АН-4А и других, содержащих хлористые и фтористые соли лития, натрия, калия и бария. В качестве присадочных прутков применяют сплав с содержанием 5...6% кремния.