
- •Ю.Н. Гондин, в.А. Колюнов, б.В. Устинов
- •Содержание
- •Опорный конспект лекций
- •1. Основные этапы конструирования станков
- •2. Определение основных технических характеристик станка
- •2.1. Определение предельных значений частот вращения шпинделя и предельных значений подач
- •Скорости резания, допускаемые станками и инструментом, в м/мин
- •Значения Rs и zs
- •2.2. Предварительное определение мощности электродвигателя
- •3. Разработка кинематической схемы
- •3.1. Выбор типа привода
- •3.2. Компоновка привода главного движения
- •3.3. Выбор типа последней передачи
- •Рекомендуемые значения окружных скоростей
- •3.4. Кинематические расчеты коробок скоростей
- •3.4.1. Множительные структуры коробок скоростей
- •Тогда передаточное отношение передач, согласно графику, будет
- •Ряды предпочтительных чисел коробок скоростей
- •Структуры коробок скоростей в зависимости от количества скоростей в приводе
- •3.4.2. Коробки скоростей с бесступенчатым регулированием
- •3.4.3. Коробки скоростей со сложенной структурой
- •Со сложенной структурой
- •3.4.4. Особые множительные структуры
- •Характеристиками передач
- •Частоты вращения вала электродвигателя при и
- •3.5. Особенности кинематического расчета коробок подач
- •И график частот вращения (б)
- •4. Компоновки станков
- •Консольного (I) и бесконсольного (II) фрезерных станков:
- •4.1. Структурный анализ базовых компоновок
- •Компоновке узлов токарного станка
- •Ограничивающих условий
- •4.2. Установление и фиксация взаимосвязи отправных позиций проекта общего вида станка
- •5. Шпиндельные узлы станков
- •5.1. Конструкции шпиндельных узлов на подшипниках качения
- •Основные типы концов шпинделей
- •Точность и быстроходность шпиндельных узлов на разных опорах
- •Границы применимости различных методов смазывания
- •Рекомендуемые для шпинделей марки стали и методы упрочнения
- •Коническом двухрядном в передней опоре
- •В передней опоре
- •Рекомендуемые классы точности подшипников качения для шпинделей станков
- •5.2. Конструкции шпиндельных узлов на подшипниках скольжения
- •Масляными клиньями
- •Рекомендуемые для шпинделей с опорами на подшипниках жидкостного трения марки стали и методы упрочнения
- •5.3. Алгоритм проектирования шпиндельного узла
- •Допустимые значения температуры нагрева наружного кольца подшипника качения в с
- •Выбор типа опор в зависимости от основных параметров шпиндельного узла
- •Приводные элементы шпиндельных узлов в зависимости от класса точности станка
- •6. Проектирование привода главного движения станка
- •С трехступенчатой коробкой скоростей
- •(С прямозубыми передачами)
- •6.1. Устройства для соединения вала двигателя с первым валом коробок скоростей
- •Материал шкивов
- •Геометрические параметры зубчатых ремней
- •Ширина ремня в зависимости от модуля
- •6.2. Передачи зацеплением
- •Характеристика зубчатых колес
- •6.3. Валы
- •Рекомендуемые для силовых зубчатых колес (цилиндрических и конических) марки стали и методы упрочнения
- •Требования к твердости валов и рекомендуемые марки стали и методы упрочнения
- •6.4. Специфика расчета передач коробок скоростей
- •На шпинделе от частоты вращения n
- •Здесь DиDсвыражены в метрах, аС1– в килограммах.
- •6.5. Механизмы переключения коробок скоростей
- •7. Базовые детали и направляющие
- •7.1. Конструктивные формы базовых деталей и материалы
- •7.2. Расчет базовых деталей
- •Значения коэффициентов k1 и k2 в зависимости от расположения перегородок в станине
- •7.3. Конструкция направляющих станков и их расчет
- •Конструктивные схемы направляющих
- •8. Фундаменты станков
- •Факторы, определяющие выбор способа установки станков, обеспечивающего их нормальную работоспособность
- •8.1. Рекомендации по установке станков нормальной точности на фундаменты
- •Высота фундаментов под металлорежущие станки нормальной точности массой до 30 т (сНиП II-б.7-70)
- •8.2. Расчеты фундаментов
- •Характеристики прочности и жесткости грунтов
- •9. Контроль знаний Контрольные вопросы
- •Задачи к экзаменационным билетам
- •Глоссарий
- •Список литературы
Рекомендуемые для шпинделей с опорами на подшипниках жидкостного трения марки стали и методы упрочнения
Принадлежность шпинделя к группе станков |
Марка стали |
Метод упрочнения |
Кругло-резьбо-плоско-шлифовальные (шпиндели шлифовального круга) классов точности Н, П, В, А |
38Х2МЮА |
Азотирование |
Токарные классов точности В, А |
30Х3МФ |
Азотирование |
Расточные (выдвижные шпиндели) классов точности П, В, А |
38Х2МЮА |
Азотирование |
5.3. Алгоритм проектирования шпиндельного узла
Структурная модель системы проектирования шпиндельного узла представлена на рис. 5.16 [7].
1. Исходные данные | ||||
Класс точности станка |
Мощность Nmax, кВт |
Частота вращения nmax, мин-1 |
Диаметр шпинделя в первой опоре d, мм |
Тип системы смазки |
2. Назначение численных значений проектных критериев | ||||
Точность |
Жесткость |
Нагрев опор |
Долговечность |
Себестоимость |
3. Выбор типа опор | ||||
Подшипники качения |
Гидростатические подшипники |
Гидродинамические подшипники |
Подшипники с воздушной смазкой |
Магнитные подшипники |
4. Выбор диаметра d(если не задан)d = (dn) табл./nmax |
|
4а. Выбор компоновочной схемы |
d=Nmax/(0,15 – 0,85) |
|
5 |
6. Расчет межопорного расстояния lопт, коррекцияl Расчет места расположения приводного элемента В |
7. Расчет жесткости шпиндельных узлов или перемещения переднего конца шпинделя y |
8. Расчет динамических характеристик Расчет точности опор и деталей шпиндельных узлов Расчет допусков на размер посадочных поверхностей Выбор и расчет уплотнений Расчет параметров системы смазки Тепловой расчет Расчет долговечности |
9. Оформление технического и рабочего проектов |
Рис. 5.16. Алгоритм проектирования шпиндельного узла
На первом этапе проектирования из технического задания выбираются исходные данные: группа станка; класс точности станка; мощность главного привода; максимальная и минимальная частоты вращения шпинделя; диаметр шпинделя в передней опоре и тип системы смазки (могут выбираться при проектировании или могут быть заданы) и устанавливаются проектные параметры.
Проектными параметрами называют неизвестные величины, значения которых определяются в процессе проектирования. Они подразделяются на независимые и зависимые переменные параметры, которые полностью и однозначно определяют конструкцию шпиндельного узла.
Исходя из системного подхода, проектирование направлено прежде всего на получение заданных требований к обработанной на станке детали.
Принимая станок за систему, а шпиндель с опорами за подсистему, структурными составляющими модели будут передняя и задняя опоры, привод, уплотнения, передняя консоль, элементы крепления, элементы системы смазки, механизм зажима заготовки или инструмента, элементы диагностики и автоматики, которые можно рассматривать как подсистемы более низкого ранга, а детали и их части и поверхности как элементы.
К независимым проектным параметрам относятся:
1. Компоновочные параметры: тип опор; число опор; компоновка опор (компоновочная схема); тип системы смазки.
Тип системы смазки опор и условия их работы, как правило, определяют конструкцию уплотнений опор.
2. Геометрические параметры: диаметр шпинделя в передней опоре (d); длина переднего конца шпинделя (а); межопорное расстояние (l); расстояние от передней опоры до приводного элемента (b).
3. Внутренние параметры: радиальный внутренний зазор-натяг опор качения (е); предварительный натяг опор качения (Ао); зазор-натяг посадки опор качения (Н); точность опор и сопряженных деталей; параметры опор скольжения.
К зависимым проектным параметрам относятся: диаметр шпинделя на переднем конце (dк); диаметр шпинделя между опорами (dм); диаметр шпинделя в задней опоре (d3) и диаметр шпинделя на заднем конце; диаметр отверстия в шпинделе (di) (см. рис. 5.16).
На втором этапе определяются проектные критерии.
Оценка качества проектируемого шпиндельного узла осуществляется по проектным критериям, которые выражаются в терминах цели системы, нахождение или оценка значений которых является целью поисковых операций. Общий набор основных проектных критериев следующий.
Точность вращения шпинделя. Характеризуется радиальным, осевым и торцовым биениями переднего конца шпинделя, круглостью и волнистостью обработанных на чистовых режимах образцов. Устанавливается по ГОСТу и по требуемой точности обработки деталей.
Жесткость. Различают радиальную и осевую, статическую и динамическую жесткость (j) на переднем конце шпинделя от действия сил резания и сил со стороны привода. Динамическая жесткость оценивается по величине, обратной радиус-вектору, снятому с АФЧХ упругой системы при определенной частоте . Она разная на разных частотах и характеризуется отношением амплитуды возмущающей силы, меняющейся по гармоническому закону, к амплитуде соответствующего перемещения. При = 0 получаем статическую жесткость.
Для шпиндельных узлов современных токарных, фрезерных, расточных и некоторых шлифовальных станков с ЧПУ отношение передаваемой мощности к радиальной жесткости
.
Нагрев опор. Характеризуется температурой нагрева опор на максимальной частоте вращения.
С целью ограничения температурных деформаций ЭНИМС установил следующие допустимые значения температуры нагрева опор в зависимости от класса точности станка (табл. 5.7).
Таблица 5.7