Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Устинов / Гондин, Колюнов, Устинов Металлорежущие станки.doc
Скачиваний:
605
Добавлен:
11.03.2016
Размер:
28.72 Mб
Скачать

5.1. Конструкции шпиндельных узлов на подшипниках качения

Конструкция шпиндельного узла зависит от типа и размера станка, класса его точности, предельных параметров процесса обработки (максимальной частоты вращения nmax, эффективной мощности привода).

Конфигурацию переднего конца шпинделя выбирают в зависимости от способа крепления инструмента или заготовки. Так как для их крепления применяют стандартные приспособления, то передние концы шпинделей для большинства типов станков назначаются в соответствии с ГОСТ (см. табл. 5.1). В зависимости от требований к процессу смены инструмента или приспособлений центрование осуществляется конусом Морзе, конусами с конусностью 7/24 или 1/3.

Конфигурация внутренних поверхностей определяется наличием отверстия для пруткового материала и конструкцией зажимного устройства, встраиваемого в шпиндель.

Таблица 5.1

Основные типы концов шпинделей

Конструктивное исполнение

Применение в станках

Токарных, токарно-револьверных, токарных многорезцовых, шлифовальных и др.

Фрезерных

Сверлильных

и расточных

Шлифовальных

Тип приводного элемента зависит в первую очередь от частоты вращения, величины передаваемой силы, требований к плавностивращения, а также от общей компоновки привода. Зубчатые передачи наиболее просты и компактны, передают большие крутящие моменты, однако из-за погрешностей и передачи возмущений на шпиндель их обычно не применяют в прецизионных станках, а также при высоких частотах вращения. При использовании ременной передачи конструкция усложняется, увеличиваются ее размеры, особенно если шкив устанавливают на самостоятельные опоры для разгрузки шпинделя. Однако при этом существенно повышается плавность вращения, уменьшаются динамические нагрузки в приводе станков с прерывистым характером процесса резания. Приводные шестерни и шкивы должны иметь посадки без зазора (предпочтительно на конические поверхности) и быть расположены ближе к опорам.

Для привода скоростных шпинделей, например, шлифовальных станков, часто применяют высокочастотные асинхронные электрошпиндели с короткозамкнутым ротором, несущие шлифовальный круг.

Тип опор шпинделя, определяющий форму посадочных мест, выбирают на основании требований по точности обработки и быстроходности, которая определяется скоростным параметром. Эти значения для разных типов опор приведены в табл. 5.2.

Таблица 5.2

Точность и быстроходность шпиндельных узлов на разных опорах

Тип опор

Радиальное и осевое биение шпинделя, мкм

Отклонение от круглости обработанного изделия, мкм

Скоростной параметр ,

мм · мин-1

Качения

1,00

1,0

0-10

Гидродинамические

0,50

0,5

1-10

Гидростатические

0,05

0,2

0-15

Аэростатические

0,10

0,5

5-40

Учитывая эти параметры, а также то, что подшипники качения имеют меньшую стоимость при централизованном изготовлении и просты в эксплуатации, в настоящее время более 95% станков изготавливают со шпиндельными узлами на подшипниках качения.

В шпинделях станков для обеспечения высокой грузоподъемности, точности вращения, повышенной жесткости и минимальных выделений теплоты, как правило, применяют подшипники качения специальных конструкций. Для восприятия радиальных нагрузок широко используют двухрядные подшипники 3182100 с цилиндрическими роликами. Два ряда точных роликов, расположенных в шахматном порядке, обеспечивают грузоподъемность и жесткость подшипника при высокой точности вращения.

Для шпинделей также практически применяют все основные типы подшипников качения: шариковые радиальные и радиально-упорные, роликовые с коническими и цилиндрическими роликами и др. В качестве характеристики работоспособности шпиндельных опор качения можно принять следующие показатели:

; ;

; ,

где N – мощность привода; nmax – наибольшая частота вращения шпинделя; D – максимальный диаметр обрабатываемой детали; dк – диаметр шпинделя в передней опоре.

Здесь показатели К1 и К3 характеризуют среднюю нагруженность шпиндельных узлов станка, а К2 и К4 – их быстроходность. Развитие конструкций шпиндельных узлов характеризуется возрастанием указанных показателей. Это связано с применением специальных типов подшипников качения, основные из которых показаны на рис. 5.1. Шарикоподшипник упорно-радиальный двухрядный с углом контакта 60° (рис. 5.1, а) предназначен для восприятия осевой нагрузки.

а)

б)

в)

г)

д)

Рис. 5.1. Подшипники качения шпиндельных узлов

Его устанавливают рядом с двухрядным роликоподшипником с короткими цилиндрическими роликами. Параметр быстроходности мм · мин-1, что в 2-2,5 раза больше, чем у обычных упорных шарикоподшипников. Роликоподшипники конические однорядные и двухрядные с буртом на наружном кольце (рис. 5.1, б, д) предназначены для восприятия радиальной и осевой нагрузок. Их устанавливают, как правило, в передней опоре шпинделя; мм · мин-1. Роликоподшипник конический однорядный с широким наружным кольцом (рис. 5.1, в) устанавливают в заднюю опору шпинделя. Параметр быстроходности имеет то же значение, что у подшипников, показанных на рис. 5.1, б, д.

Особо быстроходный радиально-упорный шарикоподшипник в универсальном исполнении (рис. 5.1, г) предназначен для восприятия радиальной и осевой нагрузок. Подшипники собирают в комплекты (два, три или четыре подшипника). Для обеспечения высокой точности вращения шпиндели устанавливают в подшипниках повышенных классов точности; высокий (5 кл.), прецизионный (4 кл.), сверхпрецизионный (2 кл.) [9].

Методы смазывания во многом определяют надежность работы шпиндельного узла. Для подшипников качения применяют жидкий либо твердый смазочный материал. Примерные границы применимости различных методов смазывания по параметру (dn)max указаны в табл. 5.3.

Таблица 5.3