
- •ЗАДАНИЯ ДЛЯ ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
- •080100.62 Экономика
- •Раздел. II. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
- •Тема 4. Вычисление производных
- •4.1. Вопросы для самостоятельного изучения
- •4.1.1. Производная функции
- •4.1.2. Правило дифференцирования по шагам
- •4.1.3. Геометрический смысл производной.
- •4.1.4. Правила и формулы дифференцирования
- •4.1.5. Таблица производных:
- •4.1.6. Производная сложной функции
- •4.1.7. Логарифмическое дифференцирование
- •4.1.8. Производные высших порядков
- •4.1.9. Дифференциал функции, его свойства
- •4.2. Контрольные вопросы
- •4.3. Практическое задание для самостоятельной работы
- •Тема 5. Исследование функций на экстремумы и интервалы монотонности
- •5.1. Вопросы для самостоятельного изучения
- •5.1.1. Условия возрастания и убывания функции
- •5.1.2. Точки экстремума функции, необходимое условие экстремума
- •5.1.6. Второй способ исследования функции на экстремум
- •5.1.7. Наибольшее и наименьшее значения функции на отрезке
- •5.1.8. Выпуклость, вогнутость графика функции
- •5.1.9. Точки перегиба. Необходимое и достаточное условие перегиба.
- •5.1.10. Исследование функции на выпуклость, вогнутость, точки перегиба
- •5.1.11. Асимптоты графика функции
- •5.1.12. Общая схема исследования функции
- •5.2. Контрольные вопросы
- •Тема 6. Исследование функций двух переменных
- •6.1. Вопросы для самостоятельного изучения
- •6.1.1. Экстремумы функции двух переменных, необходимое условие экстремума
- •6.1.2. Достаточные условия экстремума
- •6.2. Контрольные вопросы
- •6.3. Практическое задание для самостоятельной работы
- •Раздел. I. ПРЕДЕЛ ФУНКЦИИ
- •Тема 1. Элементы теории множеств. Понятие функции
- •1.1. Вопросы для самостоятельного изучения
- •1.1.1. Элементы теории множеств
- •1.1.2. Операции над множествами
- •1.1.3. Отображение множеств. Мощность множества.
- •1.1.4. Употребление математической символики. Кванторы общности, существования и единственности
- •1.1.5. Числовые множества
- •1.1.7. Окрестность точки
- •1.1.8. Понятие функции
- •1.1.9. Элементарные функции, свойства функции
- •1.1.10. Четность, нечетность.
- •1.2. Контрольные вопросы
- •Тема 2. Теория пределов
- •2.1. Вопросы для самостоятельного изучения
- •2.1.1. Числовая последовательность
- •2.1.2. Предел числовой последовательности
- •2.1.3. Бесконечно малые и бесконечно большие функции
- •2.1.4. Предел функции
- •2.1.5. Сравнение бесконечно малых функций
- •2.1.6. Замечательные пределы
- •2.2. Контрольные вопросы
- •Тема 3. Предел и непрерывность функции
- •3.1. Вопросы для самостоятельного изучения
- •3.1.1. Односторонние пределы
- •3.1.2. Необходимое и достаточное условие существования предела
- •3.1.3. Непрерывность функции
- •3.1.4. Точки разрыва и их классификация
- •3.1.5. Свойства непрерывных функций
- •3.2. Контрольные вопросы
- •3.3. Практическое задание для самостоятельной работы
- •Раздел. III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ
- •Тема 7. Решение задач на нахождение неопределенных интегралов. Нахождение неопределенных интегралов различными методами
- •7.1. Вопросы для самостоятельного изучения
- •7.1.1. Неопределенный интеграл
- •7.1.2. Свойства неопределенного интеграла
- •7.1.3. Таблица интегралов
- •7.1.4. Метод интегрирования по частям
- •7.1.5. Рациональные дроби
- •7.1.6. Интегрирование простейших рациональных дробей
- •7.1.7. Интегрирование рациональных дробей
- •7.1.8. Метод замены переменной (метод подстановки)
- •7.1.9. Интегрирование иррациональных выражений
- •7.2. Контрольные вопросы
- •Тема 8. Вычисление определенных интегралов. Приложения определенного интеграла. Исследование сходимости несобственных интегралов
- •8.1. Вопросы для самостоятельного изучения
- •8.1.1. Определение определенного интеграла
- •8.1.2. Свойства определенного интеграла:
- •8.1.3. Вычисление определенного интеграла, физические приложения определенного интеграла
- •8.1.4. Интегрирование по частям в определенном интеграле
- •8.1.5. Формула замены переменной в определенном интеграле
- •8.1.6. Приложения определенного интеграла
- •8.1.7. Площадь плоской фигуры
- •8.1.8. Объем тела вращения
- •8.2. Контрольные вопросы
- •8.3. Практическое задание для самостоятельной работы
- •РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
а) основная литература
Математика: Учебник для студентов вузов, обучающихся по специальностям экономики и управления (060000) / Б.Т. Кузнецов – 2-е изд., перераб. и доп. – М: ЮНИТИ-ДАНА, 2004. – 719 с. – (Серия «Высшее профессиональное образование: Экономика и управление»).
Сборник задач по высшей математике для экономистов: Учебное пособие / Под ред. В.И. Ермакова. – ИНФРА-М, 2007. – 575 с. (Серия «Высшее образование»).
б) дополнительная литература
Кремер Н.Ш. и др. Высшая математика для экономистов. – М.: ЮНИТИ,
2004.
Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 2000.
Щипачев В.С. Высшая математика. М.: ВШ, 2003.
Пискунов Н.С. Дифференциальное и интегральное исчисление. Том 1.
М.: ВШ, 2000.
Красс М.С., Чупрынов Б.П. Математика для экономистов. СПб.: Питер,
2004.
Астровский А.И., Широкова Н.А. Курс лекций по высшей математике.
Ч.1. – Мн.: ИСЗ, 2002.
Гусак А.А., Бричикова Е.А., Гусак Г.М. Теория функций комплексной переменной и операционное исчисление. – Мн.: ТетраСистемс, 2002.
Ивашев-Мусатов О.С. Начала математического анализа. – М.: Физматлит,
2002.
Ильин В.А., Садовничий В.А., Сендов Бл.Х. Математический анализ. В 2- х частях. – М.: Проспект, 2004.
63
Кудрявцев Л.Д. Краткий курс математического анализа. В 2-х томах.– М.: Физматлит, 2002.
Марков Л.Н., Размыслович Г.П. Высшая математика. Ч.2. Основы математического анализа и элементы дифференциальных уравнений. Мн.: Амалфея, 2003.
Письменный Д.Т. Конспект лекций по высшей математике. – М.: Айрис-
пресс, 2005. – 608 с.
Фихтенгольц Г.М. Основы математического анализа. В 2-х частях. – СПб.: Изд-во «Лань», 2002.
Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах: Учеб. пособие для студентов втузов. В двух частях. Часть I. – 4-е изд.испр. и доп. – М.: Высш. шк., 1986. – 304 с., ил.
Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах: Учеб. пособие для студентов втузов. В двух частях. Часть II.
– 4-е изд.испр. и доп. – М.: Высш. шк., 1986. – 415 с., ил.
64