
- •Математические методы
- •Содержание
- •Раздел I
- •Тема 1. Измерения в психологии
- •Тема 2. Представление данных
- •Тема 3. Меры центральной тенденции
- •Тема 4. Меры изменчивости
- •Тема 5. Распределение признака.
- •Тема 6. Понятие выборки
- •1.2 Шкалы измерения
- •Представление данных
- •2.1 Группировка данных
- •2.2 Табулирование данных
- •2.3 Ранговый порядок
- •2.4 Распределение частот
- •2.5 Статистические ряды
- •2.6 Понятие распределения
- •Меры центральной тенденции
- •3.1 Мода
- •Замечание
- •3.2 Медиана
- •3.3 Среднее
- •3.4 Мода, медиана и среднее значение объединенных групп
- •3.5 Интерпретация моды, медианы и среднего значения
- •3.6 Выбор мер центральной тенденции
- •Меры изменчивости
- •4.1 Размах
- •4.2 Дисперсия и стандартное отклонение
- •Задача 4.1
- •Свойства дисперсии
- •Распределение признака. Нормальное распределение
- •5.1 Параметры распределения
- •5.2 Нормальное распределение
- •5.3 Асимметрия
- •5.4 Эксцесс
- •5.4 Применение нормального распределения
- •Понятие выборки
- •6.1 Полное и выборочное исследования
- •6.2 Зависимые и независимые выборки
- •6.3 Требования к выборке
- •6.4 Репрезентативность выборки
- •6.5 Формирование выборки
- •6.6 Определение объема выборки
- •Раздел II
- •Тема 7. Статистические гипотезы и
- •Тема 8. Классификация психологических
- •7.2 Статистические критерии
- •7.3 Параметрические и непараметрические методы
- •7.4 Уровни статистической значимости
- •Замечание
- •7.5 Правило отклонения нулевой и принятия альтернативной гипотезы
- •Задача 7.1
- •7.6 Мощность критериев
- •Классификация психологических задач, решаемых с помощью статистических методов
- •8.1 Классификация задач
- •Показатели группы а п Эффективность воздействия признаковризнак 1
- •После изменения
- •Показатели группы а п Степень согласованности или взаимосвязь ризнак 1
- •Показатели группы а у Сопоставление индивидуальных значений при изменении условийсловие 1
- •8.2 Принятие решения о задаче и методе
- •Раздел III
- •Тема 9. Корреляционный анализ
- •Тема 10. Выявление различий в уровне исследуемого признака
- •Тема 11. Оценка достоверности сдвига в значениях исследуемого
- •Тема 12. Критерии согласия
- •9.2 Коэффициент ранговой корреляции rS спирмена
- •9.3 Коэффициент линейной корреляции пирсона
- •9.4 Расчет уровней значимости коэффициентов корреляции
- •9.5 Коэффициент корреляции
- •Тема 10
- •Выявление различий в уровне исследуемого признака
- •10.1 Постановка задачи
- •10.2 Q – критерий розенбаума
- •10.3 S – критерий тенденций джонкира
- •Определим величину a: . Теперь определим величину b по формуле (10.11):
- •Тема 11
- •Оценка достоверности сдвига в значениях исследуемого признака
- •11.1 Постановка задачи
- •11.2 T – критерий вилкоксона
- •Типичными сдвигами в этой задаче являются сдвиги в сторону увеличения – их больше. Нетипичными – в сторону уменьшения.
- •Гипотезы к задаче
- •Тема 12
- •Выявление различий в распределении признака
- •12.1 Постановка задачи
- •12.2 2 Критерий пирсона
- •Гипотезы к задаче
- •12.3 – Критерий колмогорова-смирнова
- •12.4 Критерий * - угловое преобразование фишера
- •Гипотезы к задаче
- •Значение функции (ординаты единичной нормальной кривой)
- •Критические значения выборочного коэффициента корреляции рангов
- •Критические значения выборочного коэффициента линейной корреляции rxy Пирсона
- •Критические значения t-критерия Стьюдента при различных уровнях значимости
- •Критические значения критерия q-Розенбаума для уровней статистической значимости 0,05 и 0,01
- •Критические значения критерия s-Джонкира для количества групп (с) от трех до шести и количества испытуемых в каждой группе от двух до десяти
- •Критические значения критерия t Вилкоксона для уровней статистической значимости
- •Критические значения критерия 2 для уровней статистической значимости α 0,05 и α 0,01 при разном числе степеней свободы V
- •Критические значения dmax соответствующие уровням статистической значимости ,05 и 0,01 при сопоставлении эмпирического распределения с теоретическим
- •Таблицы для углового преобразования Фишера
- •Уровни статистической значимости разных значений критерия * Фишера
- •Лабораторные работы по дисциплине «Математические методы в психологии»
- •Лабораторная работа №1 Представление данных
- •Лабораторная работа №2 Графическое представление данных
- •Лабораторная работа № 3 Описательная статистика
- •Лабораторная работа №4 Корреляционный анализ
- •Данные для вариантов 1-6 (х1 – усредненные эталонные оценки, х2 – индивидуальные показатели преподавателя н-ва):
- •Данные для вариантов 7-12 (х1 – количество аварийных ситуаций, х2 – стаж вождения автомобиля):
- •Лабораторная работа №5 Оценка достоверности различий между двумя выборками по уровню признака
- •Данные для вариантов 7-12 (х1 – данные по детям из неблагополучных семей, х2 – данные по детям из благополучных семей):
- •Лабораторная работа №6 Оценка достоверности различий между несколькими выборками по уровню признака
- •Лабораторная работа №7 Оценка достоверности сдвига
- •Лабораторная работа №8 Оценка достоверности расхождения или согласия распределений (критерий Пирсона)
- •Лабораторная работа №9 Оценка достоверности расхождения или согласия распределений (критерий - Колмогорова-Смирнова)
- •Лабораторная работа №10 Многофункциональный критерий Фишера
- •Описание статистических функций табличного процессора Microsoft Excel
- •Частота
- •______________________________ Ранг
- •______________________________ Мин
- •______________________________ Срзнач
- •______________________________ Медиана
- •______________________________ Мода
- •______________________________ Счёт
- •______________________________ Счётесли
- •______________________________ Дисп
- •______________________________ Стандотклон
- •______________________________ Скос
- •Эксцесс
- •______________________________ Хи2тест
- •______________________________ Хи2обр
- •Применение пакета анализа для решения статистических задач в табличном процессоре Microsoft Excel
- •Корреляция
- •Литература
- •Математические методы в психологии Учебно-методическое пособие
Лабораторная работа №10 Многофункциональный критерий Фишера
Задание.В выборке студентов факультета психологии Санкт-Петербургского университета с помощью «карандашного» теста определялось преобладание левого (количество А) или правого (количество В) глаза в прицельной способности глаз. Совпадают ли эти данные с результатами обследования 100 студентов медицинских специальностей, представленными в другом эксперименте?
|
1 вариант |
2 вариант |
3 вариант |
4 вариант |
5 вариант |
6 вариант | ||||||
А |
В |
А |
В |
А |
В |
А |
В |
А |
В |
А |
В | |
Студенты-психологи |
6 |
8 |
8 |
6 |
5 |
8 |
19 |
25 |
16 |
18 |
7 |
8 |
Студенты медики |
19 |
81 |
75 |
25 |
15 |
85 |
45 |
55 |
68 |
32 |
40 |
60 |
|
7 вариант |
8 вариант |
9 вариант |
10 вариант |
11 вариант |
12 вариант | ||||||
А |
В |
А |
В |
А |
В |
А |
В |
А |
В |
А |
В | |
Студенты-психологи |
5 |
7 |
7 |
5 |
4 |
7 |
18 |
24 |
15 |
17 |
6 |
7 |
Студенты медики |
68 |
32 |
40 |
60 |
19 |
81 |
75 |
25 |
15 |
85 |
45 |
55 |
Рекомендации для выполнения лабораторных работ на компьютере:
эмпирическое значение критерия Фишера находится с использованием формул в среде Excel.
ПРИЛОЖЕНИЕ 3
Описание статистических функций табличного процессора Microsoft Excel
Частота
Вычисляет частоту появления значений в интервале значений и возвращает массив цифр. Функция ЧАСТОТА может быть использована, например, для подсчета количества результатов тестирования, попадающих в интервалы результатов. Поскольку данная функция возвращает массив, она должна задаваться в качестве формулы массива.
Синтаксис
ЧАСТОТА(массив_данных;массив_карманов)
Массив_данных – это массив или ссылка на множество данных, для которых вычисляются частоты. Если массив_данных не содержит значений, то функция ЧАСТОТА возвращает массив нулей.
Массив_карманов – это массив или ссылка на множество интервалов, в которые группируются значения аргумента массив_данных. Если массив_карманов не содержит значений, то функция ЧАСТОТА возвращает количество элементов в аргументе массив_данных.
Замечания
ЧАСТОТА вводится как формула массива после выделения интервала смежных ячеек, в которые нужно вернуть полученный массив распределения.
Количество элементов в возвращаемом массиве на единицу больше числа элементов в массив_карманов. Дополнительный элемент в возвращаемом массиве содержит количество значений, больших чем максимальное значение в интервалах. Например, при подсчете трех диапазонов значений (интервалов), введенных в три ячейки, убедитесь в том, что функция ЧАСТОТА возвращает значения в четырех ячейках. Дополнительная ячейка возвращает число значений в массив_данных, больших чем значение границы третьего интервала.
ЧАСТОТА игнорирует пустые ячейки и тексты.
Формулы, которые возвращают массивы, должны быть введены как формулы массивов.
Пример
Предположим, что на рабочем листе перечислены результаты тестирования в баллах. Баллы 79, 85, 78, 85, 83, 81, 95, 88 и 97 введены в ячейки A1:A9 соответственно. Тогда аргумент массив_данных содержит столбец этих баллов. Аргумент массив_карманов будет другим столбцом, задающим интервалы, в которые должны быть сгруппированы данные В данном примере массив_карманов – это интервал ячеек C4:C6, который будет содержать значения 70, 79, 89. Если ввести функцию ЧАСТОТА как формулу массива, то можно подсчитать количество результатов тестирования, попадающих в интервалы 0-70, 71-79, 80-89 и 90-100. В этом примере предполагается, что все баллы – целые числа. Следующая формула вводится как формула массива после выделения четырех вертикально смежных ячеек для результата. Четвертое число (2) представляет собой счетчик значений (95 и 97), которые больше чем граница наибольшего интервала (89).
ЧАСТОТА(A1:A9;C4:C6) равняется {0:2:5:2}