
- •Математические методы
- •Содержание
- •Раздел I
- •Тема 1. Измерения в психологии
- •Тема 2. Представление данных
- •Тема 3. Меры центральной тенденции
- •Тема 4. Меры изменчивости
- •Тема 5. Распределение признака.
- •Тема 6. Понятие выборки
- •1.2 Шкалы измерения
- •Представление данных
- •2.1 Группировка данных
- •2.2 Табулирование данных
- •2.3 Ранговый порядок
- •2.4 Распределение частот
- •2.5 Статистические ряды
- •2.6 Понятие распределения
- •Меры центральной тенденции
- •3.1 Мода
- •Замечание
- •3.2 Медиана
- •3.3 Среднее
- •3.4 Мода, медиана и среднее значение объединенных групп
- •3.5 Интерпретация моды, медианы и среднего значения
- •3.6 Выбор мер центральной тенденции
- •Меры изменчивости
- •4.1 Размах
- •4.2 Дисперсия и стандартное отклонение
- •Задача 4.1
- •Свойства дисперсии
- •Распределение признака. Нормальное распределение
- •5.1 Параметры распределения
- •5.2 Нормальное распределение
- •5.3 Асимметрия
- •5.4 Эксцесс
- •5.4 Применение нормального распределения
- •Понятие выборки
- •6.1 Полное и выборочное исследования
- •6.2 Зависимые и независимые выборки
- •6.3 Требования к выборке
- •6.4 Репрезентативность выборки
- •6.5 Формирование выборки
- •6.6 Определение объема выборки
- •Раздел II
- •Тема 7. Статистические гипотезы и
- •Тема 8. Классификация психологических
- •7.2 Статистические критерии
- •7.3 Параметрические и непараметрические методы
- •7.4 Уровни статистической значимости
- •Замечание
- •7.5 Правило отклонения нулевой и принятия альтернативной гипотезы
- •Задача 7.1
- •7.6 Мощность критериев
- •Классификация психологических задач, решаемых с помощью статистических методов
- •8.1 Классификация задач
- •Показатели группы а п Эффективность воздействия признаковризнак 1
- •После изменения
- •Показатели группы а п Степень согласованности или взаимосвязь ризнак 1
- •Показатели группы а у Сопоставление индивидуальных значений при изменении условийсловие 1
- •8.2 Принятие решения о задаче и методе
- •Раздел III
- •Тема 9. Корреляционный анализ
- •Тема 10. Выявление различий в уровне исследуемого признака
- •Тема 11. Оценка достоверности сдвига в значениях исследуемого
- •Тема 12. Критерии согласия
- •9.2 Коэффициент ранговой корреляции rS спирмена
- •9.3 Коэффициент линейной корреляции пирсона
- •9.4 Расчет уровней значимости коэффициентов корреляции
- •9.5 Коэффициент корреляции
- •Тема 10
- •Выявление различий в уровне исследуемого признака
- •10.1 Постановка задачи
- •10.2 Q – критерий розенбаума
- •10.3 S – критерий тенденций джонкира
- •Определим величину a: . Теперь определим величину b по формуле (10.11):
- •Тема 11
- •Оценка достоверности сдвига в значениях исследуемого признака
- •11.1 Постановка задачи
- •11.2 T – критерий вилкоксона
- •Типичными сдвигами в этой задаче являются сдвиги в сторону увеличения – их больше. Нетипичными – в сторону уменьшения.
- •Гипотезы к задаче
- •Тема 12
- •Выявление различий в распределении признака
- •12.1 Постановка задачи
- •12.2 2 Критерий пирсона
- •Гипотезы к задаче
- •12.3 – Критерий колмогорова-смирнова
- •12.4 Критерий * - угловое преобразование фишера
- •Гипотезы к задаче
- •Значение функции (ординаты единичной нормальной кривой)
- •Критические значения выборочного коэффициента корреляции рангов
- •Критические значения выборочного коэффициента линейной корреляции rxy Пирсона
- •Критические значения t-критерия Стьюдента при различных уровнях значимости
- •Критические значения критерия q-Розенбаума для уровней статистической значимости 0,05 и 0,01
- •Критические значения критерия s-Джонкира для количества групп (с) от трех до шести и количества испытуемых в каждой группе от двух до десяти
- •Критические значения критерия t Вилкоксона для уровней статистической значимости
- •Критические значения критерия 2 для уровней статистической значимости α 0,05 и α 0,01 при разном числе степеней свободы V
- •Критические значения dmax соответствующие уровням статистической значимости ,05 и 0,01 при сопоставлении эмпирического распределения с теоретическим
- •Таблицы для углового преобразования Фишера
- •Уровни статистической значимости разных значений критерия * Фишера
- •Лабораторные работы по дисциплине «Математические методы в психологии»
- •Лабораторная работа №1 Представление данных
- •Лабораторная работа №2 Графическое представление данных
- •Лабораторная работа № 3 Описательная статистика
- •Лабораторная работа №4 Корреляционный анализ
- •Данные для вариантов 1-6 (х1 – усредненные эталонные оценки, х2 – индивидуальные показатели преподавателя н-ва):
- •Данные для вариантов 7-12 (х1 – количество аварийных ситуаций, х2 – стаж вождения автомобиля):
- •Лабораторная работа №5 Оценка достоверности различий между двумя выборками по уровню признака
- •Данные для вариантов 7-12 (х1 – данные по детям из неблагополучных семей, х2 – данные по детям из благополучных семей):
- •Лабораторная работа №6 Оценка достоверности различий между несколькими выборками по уровню признака
- •Лабораторная работа №7 Оценка достоверности сдвига
- •Лабораторная работа №8 Оценка достоверности расхождения или согласия распределений (критерий Пирсона)
- •Лабораторная работа №9 Оценка достоверности расхождения или согласия распределений (критерий - Колмогорова-Смирнова)
- •Лабораторная работа №10 Многофункциональный критерий Фишера
- •Описание статистических функций табличного процессора Microsoft Excel
- •Частота
- •______________________________ Ранг
- •______________________________ Мин
- •______________________________ Срзнач
- •______________________________ Медиана
- •______________________________ Мода
- •______________________________ Счёт
- •______________________________ Счётесли
- •______________________________ Дисп
- •______________________________ Стандотклон
- •______________________________ Скос
- •Эксцесс
- •______________________________ Хи2тест
- •______________________________ Хи2обр
- •Применение пакета анализа для решения статистических задач в табличном процессоре Microsoft Excel
- •Корреляция
- •Литература
- •Математические методы в психологии Учебно-методическое пособие
Понятие выборки
Психолог-экспериментатор в большинстве случаев изучает какую-то определенную выборку людей, которая всегда отбирается из большей по численности группы. Такая объемлющая группа называется в статистике генеральной совокупностью. Таким образом, генеральная совокупность – это любая группа людей, которую психолог изучает по выборке. Теоретически считается, что объем генеральной совокупности не ограничен. Практически же объем генеральной совокупности всегда ограничен и может быть различным в зависимости от предмета наблюдения и той задачи, которую предстоит решать психологу.
Выборкой называется любая подгруппа элементов (испытуемых, респондентов), выделенная из генеральной совокупности для проведения эксперимента. При этом отдельный индивид из выборки, с которым работает психолог, называется испытуемым (респондентом).
Объем выборки, обычно обозначаемой буквой n, может быть любым, но не меньшим чем два респондента. В статистике различают малую (п < 30), среднюю (30 < п < 100) и большую выборки (п > 100).
6.1 Полное и выборочное исследования
Если психологическому исследованию (наблюдению, измерению, эксперименту) подвергаются все представители изучаемой генеральной совокупности, то такое исследование называют полным, или сплошным.
Предполагается, что, в соответствии с задачами, гипотезами и планом, полное обследование генеральной совокупности позволяет получить исчерпывающую информацию об изучаемых в ней психологических закономерностях. Однако в отечественной и зарубежной психологии еще никогда не проводилось сплошного исследования по той причине, что на практике определить размеры той или иной генеральной совокупности и, тем более, исследовать её – задача нереальная и, кроме того, в определенной степени избыточная. Если выборка испытуемых по своим характеристикам репрезентативна генеральной совокупности, то есть основания полученные при её изучении результаты распространить на всю генеральную совокупность. Нельзя упускать из вида также и то, что работа психолога, по существу, представляет собой сложный вид деятельности, требующий высокой профессиональной компетентности и нередко много времени для работы с каждым испытуемым.
Если психолог производит выбор ограниченного числа элементов из изучаемой (генеральной) совокупности, то такое исследование называют частичным, или выборочным.
Выборочный метод является основным в экспериментальной работе психолога при изучении генеральных совокупностей. Его преимущество перед полным (сплошным) исследованием всех элементов генеральной совокупности заключается в том, что он сокращает как время, так и затраты труда, а главное – позволяет получать информацию о таких группах, полное обследование которых принципиально невозможно или нецелесообразно.
6.2 Зависимые и независимые выборки
Выборки называются независимыми (несвязными), если процедура эксперимента и полученные результаты измерения некоторого свойства у испытуемых одной выборки не оказывают влияния на особенности протекания этого же эксперимента и результаты измерения этого же свойства у испытуемых (респондентов) другой выборки.
И, напротив, выборки называется зависимыми (связными),если процедура эксперимента и полученные результаты измерения некоторого свойства, проведенные на одной выборке, оказывают влияние на другую. Следует подчеркнуть, что одна и та же группа испытуемых, на которой дважды проводилось психологическое обследование (пусть даже разных психологических качеств, признаков, особенностей), по определению оказывается зависимой, или связной выборкой.