
- •Математические методы
- •Содержание
- •Раздел I
- •Тема 1. Измерения в психологии
- •Тема 2. Представление данных
- •Тема 3. Меры центральной тенденции
- •Тема 4. Меры изменчивости
- •Тема 5. Распределение признака.
- •Тема 6. Понятие выборки
- •1.2 Шкалы измерения
- •Представление данных
- •2.1 Группировка данных
- •2.2 Табулирование данных
- •2.3 Ранговый порядок
- •2.4 Распределение частот
- •2.5 Статистические ряды
- •2.6 Понятие распределения
- •Меры центральной тенденции
- •3.1 Мода
- •Замечание
- •3.2 Медиана
- •3.3 Среднее
- •3.4 Мода, медиана и среднее значение объединенных групп
- •3.5 Интерпретация моды, медианы и среднего значения
- •3.6 Выбор мер центральной тенденции
- •Меры изменчивости
- •4.1 Размах
- •4.2 Дисперсия и стандартное отклонение
- •Задача 4.1
- •Свойства дисперсии
- •Распределение признака. Нормальное распределение
- •5.1 Параметры распределения
- •5.2 Нормальное распределение
- •5.3 Асимметрия
- •5.4 Эксцесс
- •5.4 Применение нормального распределения
- •Понятие выборки
- •6.1 Полное и выборочное исследования
- •6.2 Зависимые и независимые выборки
- •6.3 Требования к выборке
- •6.4 Репрезентативность выборки
- •6.5 Формирование выборки
- •6.6 Определение объема выборки
- •Раздел II
- •Тема 7. Статистические гипотезы и
- •Тема 8. Классификация психологических
- •7.2 Статистические критерии
- •7.3 Параметрические и непараметрические методы
- •7.4 Уровни статистической значимости
- •Замечание
- •7.5 Правило отклонения нулевой и принятия альтернативной гипотезы
- •Задача 7.1
- •7.6 Мощность критериев
- •Классификация психологических задач, решаемых с помощью статистических методов
- •8.1 Классификация задач
- •Показатели группы а п Эффективность воздействия признаковризнак 1
- •После изменения
- •Показатели группы а п Степень согласованности или взаимосвязь ризнак 1
- •Показатели группы а у Сопоставление индивидуальных значений при изменении условийсловие 1
- •8.2 Принятие решения о задаче и методе
- •Раздел III
- •Тема 9. Корреляционный анализ
- •Тема 10. Выявление различий в уровне исследуемого признака
- •Тема 11. Оценка достоверности сдвига в значениях исследуемого
- •Тема 12. Критерии согласия
- •9.2 Коэффициент ранговой корреляции rS спирмена
- •9.3 Коэффициент линейной корреляции пирсона
- •9.4 Расчет уровней значимости коэффициентов корреляции
- •9.5 Коэффициент корреляции
- •Тема 10
- •Выявление различий в уровне исследуемого признака
- •10.1 Постановка задачи
- •10.2 Q – критерий розенбаума
- •10.3 S – критерий тенденций джонкира
- •Определим величину a: . Теперь определим величину b по формуле (10.11):
- •Тема 11
- •Оценка достоверности сдвига в значениях исследуемого признака
- •11.1 Постановка задачи
- •11.2 T – критерий вилкоксона
- •Типичными сдвигами в этой задаче являются сдвиги в сторону увеличения – их больше. Нетипичными – в сторону уменьшения.
- •Гипотезы к задаче
- •Тема 12
- •Выявление различий в распределении признака
- •12.1 Постановка задачи
- •12.2 2 Критерий пирсона
- •Гипотезы к задаче
- •12.3 – Критерий колмогорова-смирнова
- •12.4 Критерий * - угловое преобразование фишера
- •Гипотезы к задаче
- •Значение функции (ординаты единичной нормальной кривой)
- •Критические значения выборочного коэффициента корреляции рангов
- •Критические значения выборочного коэффициента линейной корреляции rxy Пирсона
- •Критические значения t-критерия Стьюдента при различных уровнях значимости
- •Критические значения критерия q-Розенбаума для уровней статистической значимости 0,05 и 0,01
- •Критические значения критерия s-Джонкира для количества групп (с) от трех до шести и количества испытуемых в каждой группе от двух до десяти
- •Критические значения критерия t Вилкоксона для уровней статистической значимости
- •Критические значения критерия 2 для уровней статистической значимости α 0,05 и α 0,01 при разном числе степеней свободы V
- •Критические значения dmax соответствующие уровням статистической значимости ,05 и 0,01 при сопоставлении эмпирического распределения с теоретическим
- •Таблицы для углового преобразования Фишера
- •Уровни статистической значимости разных значений критерия * Фишера
- •Лабораторные работы по дисциплине «Математические методы в психологии»
- •Лабораторная работа №1 Представление данных
- •Лабораторная работа №2 Графическое представление данных
- •Лабораторная работа № 3 Описательная статистика
- •Лабораторная работа №4 Корреляционный анализ
- •Данные для вариантов 1-6 (х1 – усредненные эталонные оценки, х2 – индивидуальные показатели преподавателя н-ва):
- •Данные для вариантов 7-12 (х1 – количество аварийных ситуаций, х2 – стаж вождения автомобиля):
- •Лабораторная работа №5 Оценка достоверности различий между двумя выборками по уровню признака
- •Данные для вариантов 7-12 (х1 – данные по детям из неблагополучных семей, х2 – данные по детям из благополучных семей):
- •Лабораторная работа №6 Оценка достоверности различий между несколькими выборками по уровню признака
- •Лабораторная работа №7 Оценка достоверности сдвига
- •Лабораторная работа №8 Оценка достоверности расхождения или согласия распределений (критерий Пирсона)
- •Лабораторная работа №9 Оценка достоверности расхождения или согласия распределений (критерий - Колмогорова-Смирнова)
- •Лабораторная работа №10 Многофункциональный критерий Фишера
- •Описание статистических функций табличного процессора Microsoft Excel
- •Частота
- •______________________________ Ранг
- •______________________________ Мин
- •______________________________ Срзнач
- •______________________________ Медиана
- •______________________________ Мода
- •______________________________ Счёт
- •______________________________ Счётесли
- •______________________________ Дисп
- •______________________________ Стандотклон
- •______________________________ Скос
- •Эксцесс
- •______________________________ Хи2тест
- •______________________________ Хи2обр
- •Применение пакета анализа для решения статистических задач в табличном процессоре Microsoft Excel
- •Корреляция
- •Литература
- •Математические методы в психологии Учебно-методическое пособие
6.3 Требования к выборке
К выборке применяется ряд обязательных требований, определенных, прежде всего, целями и задачами исследования. Планирование эксперимента должно включать в себя учет как объема выборки, так и ряда ее особенностей. Так, в психологических исследованиях важно требование однородности выборки. Оно означает, что психолог, изучая, например, подростков, не может, включать в эту же выборку взрослых людей. Напротив, исследование, выполненное методом возрастных срезов, принципиально предполагает наличие разновозрастных испытуемых. Однако и в этом случае должна соблюдаться однородность выборки, но уже по другим критериям, в первую очередь таким, как возраст, пол. Основаниями для формирования однородной выборки могут служить разные характеристики, такие, как уровень интеллекта, национальность, отсутствие определенных заболеваний и т.д., в зависимости от целей исследования.
В общей статистике имеется понятие повторной и бесповторной выборки, или, иначе говоря, выборки с возвратом и без возврата. В качестве примера приводится, как правило, выбор шара, доставаемого из какой-либо емкости. В случае выборки с возвратом каждый выбранный шар опять возвращается в емкость и, следовательно, может быть выбран снова. При бесповторном выборе однажды выбранный шар откладывается в сторону и больше не может участвовать в выборке. В психологических исследованиях можно найти аналоги подобного рода способам организации выборочного исследования, поскольку психологу нередко приходится несколько раз тестировать одних и тех же испытуемых при помощи одной и той же методики. Однако, строго говоря, повторной в этом случае является процедура тестирования. Выборка испытуемых при полной тождественности состава в случае повторных исследований всегда будет иметь некоторые отличия, обусловленные функциональной и возрастной изменчивостью, присущей всем людям. Подобная выборка по характеру проведения процедуры является повторной, хотя смысл термина здесь, очевидно, иной, чем в случае с шарами.
Важно подчеркнуть, что все требования, предъявляемые к любой выборке, сводятся к тому, что на ее основе психологом должна быть получена наиболее полная, неискаженная информация об особенностях генеральной совокупности, из которой взята эта выборка. Иными словами, выборка должна как можно более полно отражать характеристики изучаемой генеральной совокупности.
6.4 Репрезентативность выборки
Состав экспериментальной выборки должен представлять (моделировать) генеральную совокупность, поскольку выводы, полученные в эксперименте, предполагается в дальнейшем перенести на всю генеральную совокупность. Поэтому выборка должна обладать особым качеством – репрезентативностью, позволяющей распространить полученные на ней выводы на всю генеральную совокупность.
Репрезентативность выборки очень важна, тем не менее по объективным причинам соблюдать её крайне сложно. Так, хорошо известен факт, что от 70% до 90% всех психологических исследований поведения человека проводились в США в 60-х годах XX века с испытуемыми – студентами колледжей, причем большинство из них были студентами психологами. В лабораторных исследованиях, выполняемых на животных, наиболее распространенным объектом изучения являются крысы. Поэтому неслучайно психологию называли раньше «наукой о студентах-второкурсниках и белых крысах». Студенты колледжей составляют всего 3% от общей численности населения США. Очевидно, что выборка студентов нерепрезентативна в качестве модели, претендующей на представительство всего населения страны.
Репрезентативная выборка, или, как еще говорят, представительная выборка, – это такая выборка, в которой все основные признаки генеральной совокупности представлены приблизительно в той же пропорции и с той же частотой, с которой данный признак выступает в данной генеральной совокупности. Иными словами, репрезентативная выборка представляет собой меньшую по размеру, но точную модель той генеральной совокупности, которую она должна отражать. В той степени, в какой выборка является репрезентативной, выводы, основанные на изучении этой выборки, можно с большой долей уверенности считать применимыми ко всей генеральной совокупности. Это распространение результатов называется генерализуемостью.
В идеале репрезентативная выборка должна быть такой, чтобы каждая из основных изучаемых психологом характеристик, черт, особенностей личности и т.п. была бы представлена в ней пропорционально этим же особенностям в генеральной совокупности. Согласно этим требованиям процедура формирования выборки должна иметь внутреннюю логику, способную убедить исследователя, что при сравнении с генеральной совокупностью она действительно окажется репрезентативной, представительной.
Нарушение принципов случайного выбора порой приводило к серьезным ошибкам. Стал знаменитым своей неудачей опрос, проведенный американским журналом «Литературное обозрение» относительно исхода президентских выборов в США в 1936 году.
Кандидатами на этих выборах были Ф.Д.Рузвельт и А.М.Ландон. В качестве генеральной совокупности редакция журнала использовала телефонные книги. Отобрав случайно 4 миллиона адресов, она разослала по всей стране открытки с вопросом об отношении к кандидатам в президенты. Затратив большую сумму на рассылку и обработку открыток, журнал объявил, что на предстоящих выборах президентом США с большим перевесом будет избран Ландон. Результат выборов оказался противоположным этому прогнозу.
Здесь были совершены сразу две ошибки – во-первых, телефонные книги сами по себе дают не репрезентативную выборку из населения страны, хотя бы потому, что абоненты– в основном зажиточные главы семейств. Во-вторых, прислали ответы не все, а люди, не только достаточно уверенные в своем мнении, но и привыкшие отвечать на письма, т.е. в значительной части представители делового мира, которые и поддерживали Ландона. Если бы редакция критически подошла к своей работе, она поняла бы, что методика опроса страдает изъянами.
Явление, подобное только что описанному, когда выборка представляет не всю генеральную совокупность, а лишь какой-то ее слой, какую-то ее часть, называется смещением выборки. Смещение – один из основных источников ошибок при использовании выборочного метода.
Однако для тех же самых президентских выборов социологи Дж.Гэллап и Э.Роупер правильно предсказали победу Рузвельта, основываясь только на 4 тысячах анкет. Причиной этого успеха, прославившего его авторов, было не только правильное составление выборки. Они учли, что общество распадается на социальные группы, которые более однородны, в том числе по своим политическим взглядам. Поэтому выборка из слоя может быть относительно малочисленной с тем же результатом точности. Имея результаты обследования по слоям, можно характеризовать общество в целом. Сейчас такая методика является общепринятой.
В своей конкретной деятельности психолог действует следующим образом: устанавливает подгруппу (выборку) внутри генеральной совокупности, подробно изучает эту выборку (проводит с ней экспериментальную работу), а затем, если позволяют результаты статистического анализа, распространяет полученные выводы на всю генеральную совокупность. Это и есть основные этапы работы психолога с выборкой.
Начинающий психолог должен иметь в виду часто повторяющуюся ошибку: каждый раз, когда он осуществляет сбор любых данных любым методом и из любого источника, у него всегда появляется соблазн распространить свои выводы на всю генеральную совокупность. Для того чтобы избежать подобной ошибки, надо не просто обладать здравым смыслом, но, прежде всего, хорошо владеть основными понятиями математической статистики.