TMS320C6203B

FIXED POINT DIGITAL SIGNAL PROCESSOR

SPRS086K – JANUARY 1999 – REVISED APRIL 2003

ASYNCHRONOUS MEMORY TIMING

timing requirements for asynchronous memory cycles†‡§¶ (see Figure 16 – Figure 19)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-250

 

 

 

NO.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-300

 

 

UNIT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MIN

MAX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

tsu(EDV-AREH)

Setup time, EDx valid before

ARE

high

 

1

 

 

ns

4

th(AREH-EDV)

Hold time, EDx valid after

 

 

 

 

 

 

high

 

4.9

 

 

ns

ARE

 

 

 

 

6

tsu(ARDYH-AREL)

Setup time, ARDY high before

 

 

 

 

 

 

 

 

 

low

–[(RST – 3)

* P – 6]

 

 

ns

ARE

 

 

 

7

th(AREL-ARDYH)

Hold time, ARDY high after

 

 

 

 

 

 

 

 

low

(RST – 3) * P + 2

 

 

ns

ARE

 

 

 

9

tsu(ARDYL-AREL)

Setup time, ARDY low before

 

 

 

 

 

 

 

 

 

low

–[(RST – 3)

* P – 6]

 

 

ns

ARE

 

 

 

10

th(AREL-ARDYL)

Hold time, ARDY low after

 

 

 

 

 

 

 

low

(RST – 3) * P + 2

 

 

ns

ARE

 

 

 

11

tw(ARDYH)

Pulse width, ARDY high

 

2P

 

 

ns

15

tsu(ARDYH-AWEL)

Setup time, ARDY high before

 

 

 

 

 

 

 

 

 

low

–[(WST – 3)

* P – 6]

 

 

ns

AWE

 

 

16

th(AWEL-ARDYH)

Hold time, ARDY high after

 

 

 

 

 

 

 

 

low

(WST – 3) * P + 2

 

 

ns

AWE

 

 

18

tsu(ARDYL-AWEL)

Setup time, ARDY low before

 

 

 

 

 

 

 

 

 

low

–[(WST – 3)

* P – 6]

 

 

ns

AWE

 

 

19

th(AWEL-ARDYL)

Hold time, ARDY low after

 

 

 

 

 

 

 

low

(WST – 3) * P + 2

 

 

ns

AWE

 

 

To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or hold time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input.

RS = Read Setup, RST = Read Strobe, RH = Read Hold, WS = Write Setup, WST = Write Strobe, WH = Write Hold. These parameters are programmed via the EMIF CE space control registers.

§ P = 1/CPU clock frequency in ns. For example, when running parts at 300 MHz, use P = 3.33 ns.

The sum of RS and RST (or WS and WST) must be a minimum of 4 in order to use ARDY input to extend strobe width.

switching characteristics over recommended operating conditions for asynchronous memory cyclesद# (see Figure 16 РFigure 19)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-250

 

 

NO.

 

 

PARAMETER

 

-300

 

UNIT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MIN

TYP

MAX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

tosu(SELV-AREL)

Output setup time, select signals valid to

 

 

low

RS * P – 2

 

 

ns

ARE

 

 

 

2

toh(AREH-SELIV)

Output hold time,

 

 

 

high to select signals invalid

RH * P – 2

 

 

ns

ARE

 

 

 

5

tw(AREL)

Pulse width,

 

 

 

low

 

RST * P

 

ns

ARE

 

 

 

8

td(ARDYH-AREH)

Delay time, ARDY high to

 

 

high

3P

 

4P + 5

ns

ARE

 

 

12

tosu(SELV-AWEL)

Output setup time, select signals valid to

 

 

low

WS * P – 3

 

 

ns

AWE

 

 

13

toh(AWEH-SELIV)

Output hold time,

 

 

 

high to select signals invalid

WH * P – 2

 

 

ns

AWE

 

 

14

tw(AWEL)

Pulse width,

 

 

 

low

 

WST * P

 

ns

AWE

 

 

17

td(ARDYH-AWEH)

Delay time, ARDY high to

 

 

high

3P

 

4P + 5

ns

AWE

 

RS = Read Setup, RST = Read Strobe, RH = Read Hold, WS = Write Setup, WST = Write Strobe, WH = Write Hold. These parameters are programmed via the EMIF CE space control registers.

§ P = 1/CPU clock frequency in ns. For example, when running parts at 300 MHz, use P = 3.33 ns.

The sum of RS and RST (or WS and WST) must be a minimum of 4 in order to use ARDY input to extend strobe width.

#Select signals include: CEx, BE[3:0], EA[21:2], AOE; and for writes, include ED[31:0], with the exception that CEx can stay active for an additional 7P ns following the end of the cycle.

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443

49

TMS320C6203B

FIXED POINT DIGITAL SIGNAL PROCESSOR

SPRS086K – JANUARY 1999 – REVISED APRIL 2003

ASYNCHRONOUS MEMORY TIMING (CONTINUED)

Setup = 2 Strobe = 3

Hold = 2

CLKOUT1

 

1

2

CEx

 

1

2

BE[3:0]

 

1

2

EA[21:2]

 

 

3

 

4

ED[31:0]

1

2

AOE

5

6

7

ARE

AWE

ARDY

CEx stays active for seven minus the value of Read Hold cycles after the last access (DMA transfer or CPU access). For example, if read HOLD = 1, then CEx stays active for six more cycles. This does not affect performance, it merely reflects the EMIF’s overhead.

Figure 16. Asynchronous Memory Read Timing (ARDY Not Used)

Setup = 2 Strobe = 3

Not Ready

Hold = 2

CLKOUT1

 

 

1

 

2

CEx

 

 

1

 

2

BE[3:0]

 

 

1

 

2

EA[21:2]

 

 

 

 

3

ED[31:0]

 

4

 

 

1

 

2

AOE

 

 

8 10

9

ARE

AWE

11

ARDY

CEx stays active for seven minus the value of Read Hold cycles after the last access (DMA transfer or CPU access). For example, if read HOLD = 1, then CEx stays active for six more cycles. This does not affect performance, it merely reflects the EMIF’s overhead.

Figure 17. Asynchronous Memory Read Timing (ARDY Used)

50

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443

TMS320C6203B

FIXED POINT DIGITAL SIGNAL PROCESSOR

SPRS086K – JANUARY 1999 – REVISED APRIL 2003

ASYNCHRONOUS MEMORY TIMING (CONTINUED)

Setup = 2 Strobe = 3

Hold = 2

CLKOUT1

 

12

13

CEx

 

12

13

BE[3:0]

 

12

13

EA[21:2]

 

12

13

ED[31:0]

 

AOE

15 ARE

16

14

AWE

ARDY

If no write accesses are scheduled for the next cycle and write hold is set to 1 or greater, then CEx stays active for three cycles after the value of the programmed hold period. If write hold is set to 0, then CEx stays active for four more cycles. This does not affect performance, it merely reflects the EMIF’s overhead.

Figure 18. Asynchronous Memory Write Timing (ARDY Not Used)

Setup = 2 Strobe = 3

Not Ready

Hold = 2

CLKOUT1

 

 

12

 

13

CEx

 

 

12

 

13

BE[3:0]

 

 

12

 

13

EA[21:2]

 

 

12

 

13

ED[31:0]

 

 

AOE

ARE

17

18

19

AWE

11

ARDY

If no write accesses are scheduled for the next cycle and write hold is set to 1 or greater, then CEx stays active for three cycles after the value of the programmed hold period. If write hold is set to 0, then CEx stays active for four more cycles. This does not affect performance, it merely reflects the EMIF’s overhead.

Figure 19. Asynchronous Memory Write Timing (ARDY Used)

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443

51

Соседние файлы в папке MAZ-DOD-MAT-2012