- •Data Manual
- •Release History
- •Contents
- •List of Figures
- •List of Tables
- •1 Features
- •1.1 KeyStone Architecture
- •1.2 Device Description
- •1.3 Functional Block Diagram
- •2 Device Overview
- •2.1 Device Characteristics
- •2.2 DSP Core Description
- •2.3 Memory Map Summary
- •2.4 Boot Sequence
- •2.5 Boot Modes Supported and PLL Settings
- •2.5.1 Boot Device Field
- •2.5.2 Device Configuration Field
- •2.5.2.1 Sleep / EMIF16 Boot Device Configuration
- •2.5.2.2 Ethernet (SGMII) Boot Device Configuration
- •2.5.2.3 Serial Rapid I/O Boot Device Configuration
- •2.5.2.4 PCI Boot Device Configuration
- •2.5.2.5 I2C Boot Device Configuration
- •2.5.2.6 SPI Boot Device Configuration
- •2.5.2.7 HyperLink Boot Device Configuration
- •2.5.3 PLL Boot Configuration Settings
- •2.6 Second-Level Bootloaders
- •2.7 Terminals
- •2.8 Terminal Functions
- •2.9 Development
- •2.9.1 Development Support
- •2.9.2 Device Support
- •2.9.2.1 Device and Development-Support Tool Nomenclature
- •Related Documentation from Texas Instruments
- •3 Device Configuration
- •3.1 Device Configuration at Device Reset
- •3.2 Peripheral Selection After Device Reset
- •3.3 Device State Control Registers
- •3.3.1 Device Status Register
- •3.3.2 Device Configuration Register
- •3.3.3 JTAG ID (JTAGID) Register Description
- •3.3.4 Kicker Mechanism (KICK0 and KICK1) Register
- •3.3.5 LRESETNMI PIN Status (LRSTNMIPINSTAT) Register
- •3.3.6 LRESETNMI PIN Status Clear (LRSTNMIPINSTAT_CLR) Register
- •3.3.7 Reset Status (RESET_STAT) Register
- •3.3.8 Reset Status Clear (RESET_STAT_CLR) Register
- •3.3.9 Boot Complete (BOOTCOMPLETE) Register
- •3.3.10 Power State Control (PWRSTATECTL) Register
- •3.3.11 NMI Even Generation to CorePac (NMIGRx) Register
- •3.3.12 IPC Generation (IPCGRx) Registers
- •3.3.13 IPC Acknowledgement (IPCARx) Registers
- •3.3.14 IPC Generation Host (IPCGRH) Register
- •3.3.15 IPC Acknowledgement Host (IPCARH) Register
- •3.3.16 Timer Input Selection Register (TINPSEL)
- •3.3.17 Timer Output Selection Register (TOUTPSEL)
- •3.3.18 Reset Mux (RSTMUXx) Register
- •3.4 Pullup/Pulldown Resistors
- •4 System Interconnect
- •4.1 Internal Buses, Bridges, and Switch Fabrics
- •4.2 Data Switch Fabric Connections
- •4.3 Configuration Switch Fabric
- •4.4 Bus Priorities
- •5 C66x CorePac
- •5.1 Memory Architecture
- •5.1.1 L1P Memory
- •5.1.2 L1D Memory
- •5.1.3 L2 Memory
- •5.1.4 MSMC SRAM
- •5.1.5 L3 Memory
- •5.2 Memory Protection
- •5.3 Bandwidth Management
- •5.4 Power-Down Control
- •5.5 C66x CorePac Resets
- •5.6 C66x CorePac Revision
- •5.7 C66x CorePac Register Descriptions
- •6 Device Operating Conditions
- •6.1 Absolute Maximum Ratings
- •6.2 Recommended Operating Conditions
- •6.3 Electrical Characteristics
- •7 TMS320C6678 Peripheral Information and Electrical Specifications
- •7.1 Parameter Information
- •7.1.1 1.8-V Signal Transition Levels
- •7.1.2 Timing Parameters and Board Routing Analysis
- •7.2 Recommended Clock and Control Signal Transition Behavior
- •7.3 Power Supplies
- •7.3.1 Power-Supply Sequencing
- •7.3.1.1 POR-Controlled Device Initialization
- •7.3.1.2 RESETFULL-Controlled Device Initialization
- •7.3.1.3 Prolonged Resets
- •7.3.2 Power-Down Sequence
- •7.3.3 Power Supply Decoupling and Bulk Capacitors
- •7.3.4 SmartReflex
- •7.4 Enhanced Direct Memory Access (EDMA3) Controller
- •7.4.1 EDMA3 Device-Specific Information
- •7.4.2 EDMA3 Channel Synchronization Events
- •7.4.3 EDMA3 Peripheral Register Description(s)
- •7.5 Interrupts
- •7.5.1 Interrupt Sources and Interrupt Controller
- •7.5.2 INTC Registers
- •7.5.2.1 INTC0/INTC1 Register Map
- •7.5.2.2 INTC2 Register Map
- •7.5.2.3 INTC3 Register Map
- •7.5.3 Inter-Processor Register Map
- •7.5.4 External Interrupts Electrical Data/Timing
- •7.6.1 MPU Registers
- •7.6.1.1 MPU Register Map
- •7.6.1.2 Device-Specific MPU Registers
- •7.6.2 MPU Programmable Range Registers
- •7.6.2.1 Programmable Range n Start Address Register (PROGn_MPSAR)
- •7.6.2.2 Programmable Range n - End Address Register (PROGn_MPEAR)
- •7.6.2.3 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPA)
- •7.7 Reset Controller
- •7.7.1 Power-on Reset
- •7.7.2 Hard Reset
- •7.7.3 Soft Reset
- •7.7.4 Local Reset
- •7.7.5 Reset Priority
- •7.7.6 Reset Controller Register
- •7.7.7 Reset Electrical Data / Timing
- •7.8 Main PLL and PLL Controller
- •7.8.1 Main PLL Controller Device-Specific Information
- •7.8.1.1 Internal Clocks and Maximum Operating Frequencies
- •7.8.1.2 Main PLL Controller Operating Modes
- •7.8.1.3 Main PLL Stabilization, Lock, and Reset Times
- •7.8.2 PLL Controller Memory Map
- •7.8.2.1 PLL Secondary Control Register (SECCTL)
- •7.8.2.2 PLL Controller Divider Register (PLLDIV2, PLLDIV5, PLLDIV8)
- •7.8.2.3 PLL Controller Clock Align Control Register (ALNCTL)
- •7.8.2.4 PLLDIV Divider Ratio Change Status Register (DCHANGE)
- •7.8.2.5 SYSCLK Status Register (SYSTAT)
- •7.8.2.6 Reset Type Status Register (RSTYPE)
- •7.8.2.7 Reset Control Register (RSTCTRL)
- •7.8.2.8 Reset Configuration Register (RSTCFG)
- •7.8.2.9 Reset Isolation Register (RSISO)
- •7.8.3 Main PLL Control Register
- •7.8.4 Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Electrical Data/Timing
- •7.9.1 DDR3 PLL Control Register
- •7.9.2 DDR3 PLL Device-Specific Information
- •7.9.3 DDR3 PLL Input Clock Electrical Data/Timing
- •7.10 PASS PLL
- •7.10.1 PASS PLL Control Register
- •7.10.2 PASS PLL Device-Specific Information
- •7.11 DDR3 Memory Controller
- •7.11.1 DDR3 Memory Controller Device-Specific Information
- •7.11.2 DDR3 Memory Controller Electrical Data/Timing
- •7.12 I2C Peripheral
- •7.12.1 I2C Device-Specific Information
- •7.12.2 I2C Peripheral Register Description(s)
- •7.12.3 I2C Electrical Data/Timing
- •7.12.3.1 Inter-Integrated Circuits (I2C) Timing
- •7.13 SPI Peripheral
- •7.13.1 SPI Electrical Data/Timing
- •7.13.1.1 SPI Timing
- •7.14 HyperLink Peripheral
- •7.15 UART Peripheral
- •7.16 PCIe Peripheral
- •7.17 TSIP Peripheral
- •7.18 EMIF16 Peripheral
- •7.19 Packet Accelerator
- •7.20 Security Accelerator
- •7.21 Ethernet MAC (EMAC)
- •7.22 Management Data Input/Output (MDIO)
- •7.23 Timers
- •7.23.1 Timers Device-Specific Information
- •7.23.2 Timers Electrical Data/Timing
- •7.24 Serial RapidIO (SRIO) Port
- •7.25 General-Purpose Input/Output (GPIO)
- •7.25.1 GPIO Device-Specific Information
- •7.25.2 GPIO Electrical Data/Timing
- •7.26 Semaphore2
- •7.27 Emulation Features and Capability
- •7.27.1 Advanced Event Triggering (AET)
- •7.27.2 Trace
- •7.27.2.1 Trace Electrical Data/Timing
- •7.27.3 IEEE 1149.1 JTAG
- •7.27.3.1 IEEE 1149.1 JTAG Compatibility Statement
- •7.27.3.2 JTAG Electrical Data/Timing
- •8 Mechanical Data
- •8.1 Thermal Data
- •8.2 Packaging Information
- •8.3 Package CYP
TMS320C6678
Multicore Fixed and Floating-Point Digital Signal Processor
www.ti.com |
SPRS691—November 2010 |
|
7 TMS320C6678 Peripheral Information and Electrical Specifications
This chapter covers the various peripherals on the TMS320C6678 DSP. Peripheral-specific information, timing diagrams, electrical specifications, and register memory maps are described in this chapter.
7.1 Parameter Information
This section describes the conditions used to capture the electrical data seen in this chapter.
The data manual provides timing at the device pin. For output analysis, the transmission line and associated parasitics (vias, multiple nodes, etc.) must also be taken into account. The transmission line delay varies depending on the trace length. An approximate range for output delays can vary from 176 ps to 2 ns depending on the end product design. For recommended transmission line lengths, see the appropriate application notes, user guides, and design guides. A transmission line delay of 2 ns was used for all output measurements, except the DDR3, which was evaluated using a 528-ps delay.
Figure 7-1 represents all device outputs, except differential or I2C.
Figure 7-1 Test Load Circuit for AC Timing Measurements
Device
DDR3 Output Test Load
Transmission Line
Zo = 50
4 pF
Data Manual Timing
Reference Point
(Device Terminal)
Device
Output Test Load Excluding DDR3
Transmission Line
Zo = 50
5 pF
ADVANCE INFORMATION
The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.
7.1.1 1.8-V Signal Transition Levels
All input and output timing parameters are referenced to 0.9 V for both 0 and 1 logic levels.
Figure 7-2 Input and Output Voltage Reference Levels for AC Timing Measurements
Vref = 0.9 V
Copyright 2010 Texas Instruments Incorporated |
TMS320C6678 Peripheral Information and Electrical Specifications 97 |
INFORMATION ADVANCE
TMS320C6678
Multicore Fixed and Floating-Point Digital Signal Processor
SPRS691—November 2010 |
www.ti.com |
|
All rise and fall transition timing parameters are reference to VIL MAX and VIH MIN for input clocks.
Figure 7-3 Rise and Fall Transition Time Voltage Reference Levels
Vref = VIH MIN (or VOH MIN)
7.1.2 Timing Parameters and Board Routing Analysis
The timing parameter values specified in this data sheet do not include delays by board routings. As a good board design practice, such delays must always be taken into account. Timing values may be adjusted by increasing/decreasing such delays. TI recommends using the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature number TBD). If needed, external logic hardware such as buffers may be used to compensate any timing differences.
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time margin, but also tends to improve the input hold time margins (see Table 7-1 and Figure 7-4).
Table 7-1 Board-Level Timing Example
(see Figure 7-4)
No. |
Description |
1 |
Clock route delay |
|
|
2 |
Minimum DSP hold time |
|
|
3 |
Minimum DSP setup time |
|
|
4 |
External device hold time requirement |
|
|
5 |
External device setup time requirement |
|
|
6 |
Control signal route delay |
|
|
7 |
External device hold time |
|
|
8 |
External device access time |
|
|
9 |
DSP hold time requirement |
|
|
10 |
DSP setup time requirement |
|
|
11 |
Data route delay |
|
|
End of Table 7-1
98 TMS320C6678 Peripheral Information and Electrical Specifications |
Copyright 2010 Texas Instruments Incorporated |
TMS320C6678
Multicore Fixed and Floating-Point Digital Signal Processor
www.ti.com |
SPRS691—November 2010 |
|
Figure 7-4 shows a general transfer between the DSP and an external device. The figure also shows board route delays and how they are perceived by the DSP and the external device
Figure 7-4 Board-Level Input/Output Timings
AECLKOUT (Output from DSP)
AECLKOUT (Input to External Device)
Control Signals (A) (Output from DSP)
Control Signals (Input to External Device)
Data Signals (B) (Output from External Device)
Data Signals (B)
(Input to DSP)
(A)Control signals include data for writes.
(B)Data signals are generated during reads from an external device.
1

2 3 

4 
5
6

7
8 



9 
10
11
ADVANCE INFORMATION
Copyright 2010 Texas Instruments Incorporated |
TMS320C6678 Peripheral Information and Electrical Specifications 99 |
