
- •Конспект лекцій
- •Конспект лекцій
- •0 Вступ
- •1 Однофазні та багатофазні випрямлячі
- •1.1 Функціональна схема пристрою випрямлення
- •1.2 Діоди випрямлення та їх характеристики
- •1.2.1 Статична характеристика діода
- •1.2.2 Інерційність діодів
- •1.2.3 Енергетичні характеристики діодів
- •1.2.4 Паралельне та послідовне з'єднання діодів
- •1.3 Схеми випрямлення та їх класифікація
- •1.4 Аналіз схем випрямляння при активному навантаженні
- •1.4.1 Однофазний однопівперіодний випрямляч
- •1.4.2 Однофазний двопівперіодний випрямляч
- •1.4.3 Багатофазний однопівперіодний випрямляч
- •1.4.4 Пульсації напруги випрямлячів
- •1.4.5 Мостовий однофазний випрямляч
- •1.4.6 Мостовий випрямляч для отримання різнополярних напруг
- •1.4.7 Багатофазний мостовий випрямляч
- •1.4.8 Основні характеристики випрямлячів
- •1.4.9 Характеристика навантаження випрямляча
- •1.5 Робота випрямляча на навантаження з ємнісною реакцією
- •1.6 Робота випрямляча на індуктивне навантаження
- •1.7 Помножувачі напруги
- •1.7.1 Необхідність множення напруги
- •1.7.2 Пристрій подвоєння напруги
- •1.7.3 Множення напруги у довільне число разів
- •1.7.4 Несиметричний помножувач напруги першого роду
- •1.7.5 Несиметричний помножувач напруги другого роду
- •1.8 Запитання тестового контролю
- •2 Згладжуючі фільтри
- •2.1 Загальні відомості про фільтри
- •2.2 Ємнісний фільтр
- •2.3 Індуктивний фільтр
- •2.4 Г-подібні індуктивно-ємнісний (lc) та активно-ємнісний (rc) фільтри
- •2.5 П-подібний фільтр
- •2.6 Загальні положення про фільтри
- •2.7 Транзисторні фільтри
- •2.8 Запитання тестового контролю
- •3 Безперервні стабілізатори постійної напруги та струму
- •3.1 Класифікація стабілізаторів
- •3.2 Основні характеристики стабілізаторів
- •3.3 Використання стабілітронів у стабілізаторах напруги
- •3.4 Однокаскадний стабілізатор на стабілітроні
- •3.4.1 Схема стабілізатора
- •3.4.2 Рівняння для вихідної напруги
- •3.4.3 Вихідний опір стабілізатора
- •3.4.4 Коефіцієнт стабілізації
- •3.4.5 Вплив нестабільності ерс стабілітрона на вихідну напругу псн
- •3.5 Графічний розрахунок режиму роботи псн
- •3.6 Стабілізатори напруги на стабілітронах
- •3.6.1 Параметричний каскадний стабілізатор напруги
- •3.6.2 Температурна компенсація у псн
- •3.6.3 Мостова схема псн
- •3.6.4 Параметричні стабілізатори з активними елементами
- •3.6.5 Порівняння схем псн
- •3.6.6 Порядок розрахунку псн
- •3.7 Компенсаційні стабілізатори постійної напруги з неперервним регулюванням
- •3.7.1 Загальні відомості про компенсаційні стабілізатори
- •3.7.2 Послідовний та паралельний компенсаційні стабілізатори
- •3.8 Однотранзисторний послідовний стабілізатор
- •3.9 Ксн з підсилювачем у колі зворотного зв'язку
- •3.10 Складені транзистори в компенсаційних стабілізаторах
- •3.11 Прямі зв’язки в компенсаційних стабілізаторах
- •3.12 Елементи захисту у стабілізаторах
- •3.13 Низьковольтні компенсаційні стабілізатори
- •3.14 Інтегральні стабілізатори напруги
- •3.14.1 Причини використання мікросхем у стабілізаторах
- •3.14.2 Інтегральна мікросхема к142ен1
- •3.14.3 Інтегральні мікросхеми 142ен3 – 142ен9
- •3.14.4 Увімкнення імс стабілізаторів фіксованої напруги
- •3.15 Загальні зауваження щодо компенсаційних стабілізаторів
- •3.16 Імс безпосереднього перетворення змінної напруги у постійну
- •3.17 Напрямки розвитку компенсаційних стабілізаторів напруги
- •3.18 Запитання тестового контролю
- •4 Імпульсні стабілізатори постійної напруги
- •4.1 Принцип роботи імпульсного стабілізатора
- •4.2 Системи імпульсної стабілізації напруги
- •4.3 Функціональні схеми імпульсних стабілізаторів постійної напруги
- •4.3.1 Імпульсний послідовний стабілізатор
- •4.3.2 Імпульсний інвертуючий стабілізатор
- •4.3.3 Імпульсний паралельний стабілізатор
- •4.4 Особливості силових ланцюгів імпульсних стабілізаторів
- •4.5 Структурна схема ланцюга керування стабілізатора з шім
- •4.6 Імпульсний стабілізатор з шім
- •4.7 Релейний імпульсний стабілізатор
- •4.8 Стабілізатор з шім на імс к142еп1
- •4.9 Запитання тестового контролю
- •5 Інвертори та перетворювачі
- •5.1 Терміни, визначення, класифікація
- •5.2 Двотактні перетворювачі
- •5.2.1 Двотактний перетворювач напруги (дпн) з середньою точкою
- •5.2.2 Мостовий та напівмостовий дпн
- •5.2.3 Аналіз двотактних перетворювачів напруги
- •5.3 Двотактний перетворювач напруги з самозбудженням
- •5.4 Однотактні перетворювачі напруги
- •5.4.1 Однотактний перетворювач напруги з прямим увімкненням діода випрямлення (опнп)
- •5.4.2 Однотактний перетворювач напруги зі зворотним увімкненням діода випрямлення (опнз)
- •5.5 Порівняльний аналіз двотактних та однотактних перетворювачів
- •5.6 Резонансні перетворювачі
- •5.6.1 Причини розробки резонансних перетворювачів
- •5.6.2 Мостовий резонансний перетворювач з послідовним контуром
- •5.6.3 Резонансні перетворювачі з односпрямованою передачею енергії
- •5.6.4 Резонансний однотактний перетворювач напруги з прямим увімкненням діода
- •5.7 Перетворювачі з п’єзотрансформаторами
- •5.8 Високочастотні перетворювачі модульної структури
- •5.9 Функціональна схема імпульсного джерела електроживлення
- •5.10 Безперебійні джерела живлення
- •5.11 Узагальнення правил побудови джерел вторинного живлення
- •5.12 Запитання тестового контролю
- •6 Трансформатори і дроселі
- •6.1 Основні відомості
- •6.2 Гістерезис у магнітних ланцюгах
- •6.3 Втрати в магнітопроводах
- •6.4 Дроселі з однорідним феромагнітним осердям
- •6.5 Дроселі з неоднорідними магнітопроводами
- •6.6 Трансформатори
- •6.6.1 Будова трансформаторів
- •6.6.2 Робота трансформатора
- •6.6.3 Проектування трансформатора
- •6.7 Автотрансформатори
- •6.8 Магнітні підсилювачі
- •6.9 Параметричні стабілізатори змінної напруги
- •6.9.1 Дросельний стабілізатор напруги
- •6.9.2 Параметричний стабілізатор з коливальним контуром
- •7 Електромеханічні пристрої та джерела первинної електроенергії
- •7.1 Електромеханічні пристрої
- •7.2 Первинні джерела електричної енергії
- •Глосарій
- •Перелік посилань
4.6 Імпульсний стабілізатор з шім
Стабілізатор складається з таких елементів та вузлів (рисунок 4.12) [3, 7, 9, 13]: регулюючого транзистора VT2; фільтра – L1, Cн1, Cн2, VD6; схеми закривання регулюючого транзистора R2, R3, VT1, VD5, С2, R4; схеми порівняння та підсилення постійного струму – R2, R5...R8, VT3, VD7; схеми керування – С1, R1, VD1- VD4, R3.
Імпульси
керування Uкер
мають прямокутну форму (рисунок 4.13) Їх
частота
перемикання
задається зовнішнім джерелом. Імпульси
диференціюються елементами С1,
R1
(рисунок 4.13, Ua-b)
і випрямляються діодами VD1...VD4
(рисунок 4.13, Uc-d при
,
де
– напруга на виході підсилювача
постійного струму; форма керуючої
напруги наведена при
умовно для пояснення принципу роботи
стабілізатора).
Частота сформованих пилкоподібних
імпульсів вдвоє перевищує частоту
напруги керування.
Напруга
з випрямляча
надходить в ланцюг бази транзистора
VT1
(резистор R3),
де складається з підсиленим сигналом
зворотного
зв'язку
– сигналом розладу, який формується на
резисторі R2.
Полярності падіння напруг на резисторах
R3
та R2
вказані
на схемі рисунка 4.12. Приклад форми
напруги розладу при відсутності керуючих
імпульсів,
,
наведено на рисунку 4.12 (Uc-d
при
).
Рисунок 4.12 – Схема імпульсного стабілізатора з ШІМ
Часова
функція результуючого (сумарного)
сигналу керування, який діє на вході
транзистора VT1,
зображена на рисунку 4.12,
.
Рисунок 4.13 – Часові діаграми роботи імпульсного стабілізатора з ШІМ
Сигнал
розладу формується на переході база-емітер
транзистора VT3
і дорівнює
,
де:
– напругапараметричного
стабілізатора, зібраного на елементах
R5,
VD7;
– коефіцієнт передачі вихідного дільника
напруги. Він підсилюється і з резистораR2
надходить у базовий ланцюг транзистора
VT1.
При відсутності сигналів керування і
при величині сигналу меншій мінус
0,6...0,8 В транзистор VT1
відкривається.
Його перехід колектор-емітер шунтує
перехід база-емітер транзистора VT2,
і останній закривається. Струм вхідного
джерела не надходить до навантаження.
Пилкоподібна
напруга, яка виділяється на резисторі
R2,
направлена зустрічно з підсиленою
напругою розладу. Якщо
,
то потенціал бази транзистораVT1
відносно його емітера буде позитивним
і транзистор VT1
перейде в закритий стан, а транзистор
VT2
– відкриється. Струм, який протікає
через перехід база-емітер транзистора
VT2,
стабілітрон VD5
і резистор R4,
заряджає конденсатор С2
до напруги
.
Позитивний заряд накопичується на
обкладці конденсатора, яка з’єднана з
базою транзистораVT2.
Струм джерела живлення протікає через транзистор VT2, дросель L1 та опір навантаження. У дроселі і конденсаторах фільтра Сн1, Сн2 накопичується енергія.
Зі зменшенням регулюючої напруги на резисторі R3 напруга на переході база-емітер транзистора VT1 в певний момент часу стане рівною –0,6…0,7 В і він відкриється. Напруга конденсатора С2 через перехід колектор-емітер транзистора VT1 прикладається до переходу база-емітер транзистора VT2 і форсовано закриває його. Струм перестає надходити до навантаження. Діод VD5 виходить із стану електричного пробою, конденсатор С2 через нього не розряджається і підтримує закритим транзистор VT2.
При зміні вихідної напруги у стаціонарному режимі регулювання, наприклад зменшенні, зменшуються позитивний потенціал бази транзистора VТ3, базовий і колекторний струми, падіння напруги на резисторі R2. Це призводить до збільшення загального часу закритого стану транзистора VТ1 і відкритого стану транзистора VТ2 – збільшується тривалість імпульсів на вході фільтра при незмінному періоді їх слідування. Вихідна напруга збільшується до свого первинного значення.