
- •Конспект лекцій
- •Конспект лекцій
- •0 Вступ
- •1 Однофазні та багатофазні випрямлячі
- •1.1 Функціональна схема пристрою випрямлення
- •1.2 Діоди випрямлення та їх характеристики
- •1.2.1 Статична характеристика діода
- •1.2.2 Інерційність діодів
- •1.2.3 Енергетичні характеристики діодів
- •1.2.4 Паралельне та послідовне з'єднання діодів
- •1.3 Схеми випрямлення та їх класифікація
- •1.4 Аналіз схем випрямляння при активному навантаженні
- •1.4.1 Однофазний однопівперіодний випрямляч
- •1.4.2 Однофазний двопівперіодний випрямляч
- •1.4.3 Багатофазний однопівперіодний випрямляч
- •1.4.4 Пульсації напруги випрямлячів
- •1.4.5 Мостовий однофазний випрямляч
- •1.4.6 Мостовий випрямляч для отримання різнополярних напруг
- •1.4.7 Багатофазний мостовий випрямляч
- •1.4.8 Основні характеристики випрямлячів
- •1.4.9 Характеристика навантаження випрямляча
- •1.5 Робота випрямляча на навантаження з ємнісною реакцією
- •1.6 Робота випрямляча на індуктивне навантаження
- •1.7 Помножувачі напруги
- •1.7.1 Необхідність множення напруги
- •1.7.2 Пристрій подвоєння напруги
- •1.7.3 Множення напруги у довільне число разів
- •1.7.4 Несиметричний помножувач напруги першого роду
- •1.7.5 Несиметричний помножувач напруги другого роду
- •1.8 Запитання тестового контролю
- •2 Згладжуючі фільтри
- •2.1 Загальні відомості про фільтри
- •2.2 Ємнісний фільтр
- •2.3 Індуктивний фільтр
- •2.4 Г-подібні індуктивно-ємнісний (lc) та активно-ємнісний (rc) фільтри
- •2.5 П-подібний фільтр
- •2.6 Загальні положення про фільтри
- •2.7 Транзисторні фільтри
- •2.8 Запитання тестового контролю
- •3 Безперервні стабілізатори постійної напруги та струму
- •3.1 Класифікація стабілізаторів
- •3.2 Основні характеристики стабілізаторів
- •3.3 Використання стабілітронів у стабілізаторах напруги
- •3.4 Однокаскадний стабілізатор на стабілітроні
- •3.4.1 Схема стабілізатора
- •3.4.2 Рівняння для вихідної напруги
- •3.4.3 Вихідний опір стабілізатора
- •3.4.4 Коефіцієнт стабілізації
- •3.4.5 Вплив нестабільності ерс стабілітрона на вихідну напругу псн
- •3.5 Графічний розрахунок режиму роботи псн
- •3.6 Стабілізатори напруги на стабілітронах
- •3.6.1 Параметричний каскадний стабілізатор напруги
- •3.6.2 Температурна компенсація у псн
- •3.6.3 Мостова схема псн
- •3.6.4 Параметричні стабілізатори з активними елементами
- •3.6.5 Порівняння схем псн
- •3.6.6 Порядок розрахунку псн
- •3.7 Компенсаційні стабілізатори постійної напруги з неперервним регулюванням
- •3.7.1 Загальні відомості про компенсаційні стабілізатори
- •3.7.2 Послідовний та паралельний компенсаційні стабілізатори
- •3.8 Однотранзисторний послідовний стабілізатор
- •3.9 Ксн з підсилювачем у колі зворотного зв'язку
- •3.10 Складені транзистори в компенсаційних стабілізаторах
- •3.11 Прямі зв’язки в компенсаційних стабілізаторах
- •3.12 Елементи захисту у стабілізаторах
- •3.13 Низьковольтні компенсаційні стабілізатори
- •3.14 Інтегральні стабілізатори напруги
- •3.14.1 Причини використання мікросхем у стабілізаторах
- •3.14.2 Інтегральна мікросхема к142ен1
- •3.14.3 Інтегральні мікросхеми 142ен3 – 142ен9
- •3.14.4 Увімкнення імс стабілізаторів фіксованої напруги
- •3.15 Загальні зауваження щодо компенсаційних стабілізаторів
- •3.16 Імс безпосереднього перетворення змінної напруги у постійну
- •3.17 Напрямки розвитку компенсаційних стабілізаторів напруги
- •3.18 Запитання тестового контролю
- •4 Імпульсні стабілізатори постійної напруги
- •4.1 Принцип роботи імпульсного стабілізатора
- •4.2 Системи імпульсної стабілізації напруги
- •4.3 Функціональні схеми імпульсних стабілізаторів постійної напруги
- •4.3.1 Імпульсний послідовний стабілізатор
- •4.3.2 Імпульсний інвертуючий стабілізатор
- •4.3.3 Імпульсний паралельний стабілізатор
- •4.4 Особливості силових ланцюгів імпульсних стабілізаторів
- •4.5 Структурна схема ланцюга керування стабілізатора з шім
- •4.6 Імпульсний стабілізатор з шім
- •4.7 Релейний імпульсний стабілізатор
- •4.8 Стабілізатор з шім на імс к142еп1
- •4.9 Запитання тестового контролю
- •5 Інвертори та перетворювачі
- •5.1 Терміни, визначення, класифікація
- •5.2 Двотактні перетворювачі
- •5.2.1 Двотактний перетворювач напруги (дпн) з середньою точкою
- •5.2.2 Мостовий та напівмостовий дпн
- •5.2.3 Аналіз двотактних перетворювачів напруги
- •5.3 Двотактний перетворювач напруги з самозбудженням
- •5.4 Однотактні перетворювачі напруги
- •5.4.1 Однотактний перетворювач напруги з прямим увімкненням діода випрямлення (опнп)
- •5.4.2 Однотактний перетворювач напруги зі зворотним увімкненням діода випрямлення (опнз)
- •5.5 Порівняльний аналіз двотактних та однотактних перетворювачів
- •5.6 Резонансні перетворювачі
- •5.6.1 Причини розробки резонансних перетворювачів
- •5.6.2 Мостовий резонансний перетворювач з послідовним контуром
- •5.6.3 Резонансні перетворювачі з односпрямованою передачею енергії
- •5.6.4 Резонансний однотактний перетворювач напруги з прямим увімкненням діода
- •5.7 Перетворювачі з п’єзотрансформаторами
- •5.8 Високочастотні перетворювачі модульної структури
- •5.9 Функціональна схема імпульсного джерела електроживлення
- •5.10 Безперебійні джерела живлення
- •5.11 Узагальнення правил побудови джерел вторинного живлення
- •5.12 Запитання тестового контролю
- •6 Трансформатори і дроселі
- •6.1 Основні відомості
- •6.2 Гістерезис у магнітних ланцюгах
- •6.3 Втрати в магнітопроводах
- •6.4 Дроселі з однорідним феромагнітним осердям
- •6.5 Дроселі з неоднорідними магнітопроводами
- •6.6 Трансформатори
- •6.6.1 Будова трансформаторів
- •6.6.2 Робота трансформатора
- •6.6.3 Проектування трансформатора
- •6.7 Автотрансформатори
- •6.8 Магнітні підсилювачі
- •6.9 Параметричні стабілізатори змінної напруги
- •6.9.1 Дросельний стабілізатор напруги
- •6.9.2 Параметричний стабілізатор з коливальним контуром
- •7 Електромеханічні пристрої та джерела первинної електроенергії
- •7.1 Електромеханічні пристрої
- •7.2 Первинні джерела електричної енергії
- •Глосарій
- •Перелік посилань
4 Імпульсні стабілізатори постійної напруги
4.1 Принцип роботи імпульсного стабілізатора
У розглянутих компенсаційних стабілізаторах регулюючий елемент працює як керований опір. Робоча точка транзистора знаходиться приблизно на середині ділянки характеристики навантаження, і транзистор внаслідок цього розсіює велику потужність. Це обумовлює досить низький коефіцієнта корисної дії компенсаційних стабілізаторів.
Імпульсний стабілізатор напруги являє собою пристрій, у якому регулюючий елемент (транзистор, тиристор) працює в режимі перемикання (ключовому режимі). На базу транзистора стабілізатора, увімкненого послідовно з навантаженням (рисунок 4.1, а), надходять керуючі імпульси прямокутної форми, які його відкривають [2, 3, 6].
Рисунок 4.1 – Схема ключового елемента (а)
та його вихідні характеристики (б)
При
відсутності імпульсів ()
струм бази дорівнює нулю. Робоча точка
транзистора займає на вихідній
характеристиці положення 1 (рисунок
4.1,б). Струм переходу колектор-емітер
транзистораVT1
малий
і фактично вся напруга
падає не на навантаженні, а прикладена
до проміжку колектор-емітер транзистораVT1.
При
наявності імпульсів керування через
базовий перехід протікає струм бази,
який перевищує значення струму насичення,
і транзистор повністю відкривається.
Обмежується струм колектора резистором
навантаження.
Падіння напруги на транзисторі мале і
майже вся вхідна напруга
прикладається до навантаження. Робоча
точка транзистора відмічена цифрою 2.
Таким чином, як в положенні робочої точки 1 (відсічка), так і в положенні 2 (насичення), потужність, яку розсіює транзистор, є малою. У першому випадку струм транзистора, а у другому напруга на переході колектор-емітер близькі до нуля.
В активній області транзистор знаходиться при перемиканні, але цей процес можна зробити короткочасним. Тому енергія перемикання також мала.
Повна потужність втрат визначається так [3]:
, (4.1)
де
-
загальні втрати енергії за періодТ;
,
,
,
- втрати енергії за період в режимах
насичення та відсічки і при вмиканні
та вимиканні транзистора.
Час вмикання і вимикання транзистора визначається його частотними властивостями..
Напруга на навантаженні, у разі відсутності фільтра, має форму прямокутних імпульсів з амплітудою, приблизно рівною вхідній напрузі. При зміні тривалості імпульсів керування змінюється і середнє значення напруги на навантаженні:
, (4.2)
де
– тривалість імпульсів керування, тобто
час, на протязі якого регулюючий елемент
відкритий;
Т,
– період та шпаруватість імпульсів.
Структурна схема реалізації імпульсного принципу регулювання напруги на навантаженні наведена на рисунку 4.2.
Рисунок 4.2 – Структурна схема
імпульсного стабілізатора постійної напруги
Вихідну напругу отримують в результаті згладжування фільтром низьких частот імпульсів, які формуються регулюючим елементом. У схемі порівняння виробляється сигнал керування, пропорційний відхиленню середнього значення вихідної напруги відносно напруги еталонного (опорного) джерела. Підсилений сигнал неузгодження є керуючим для схеми формування послідовності імпульсів із змінними часовими характеристиками (тривалість імпульсів, частота слідування).
Імпульсні стабілізатори у порівнянні з безперервними мають більший коефіцієнт корисної дії, який може сягати 90...95 %, меншу масу та розміри. Останнє досягається виключенням або зменшенням розмірів радіатора, на який встановлюють регулюючий транзистор [3, 6, 9].
Недоліки імпульсних стабілізаторів: складна схема керування, пульсації вихідної напруги, підвищений рівень радіоперешкод.