
- •Конспект лекцій
- •Конспект лекцій
- •0 Вступ
- •1 Однофазні та багатофазні випрямлячі
- •1.1 Функціональна схема пристрою випрямлення
- •1.2 Діоди випрямлення та їх характеристики
- •1.2.1 Статична характеристика діода
- •1.2.2 Інерційність діодів
- •1.2.3 Енергетичні характеристики діодів
- •1.2.4 Паралельне та послідовне з'єднання діодів
- •1.3 Схеми випрямлення та їх класифікація
- •1.4 Аналіз схем випрямляння при активному навантаженні
- •1.4.1 Однофазний однопівперіодний випрямляч
- •1.4.2 Однофазний двопівперіодний випрямляч
- •1.4.3 Багатофазний однопівперіодний випрямляч
- •1.4.4 Пульсації напруги випрямлячів
- •1.4.5 Мостовий однофазний випрямляч
- •1.4.6 Мостовий випрямляч для отримання різнополярних напруг
- •1.4.7 Багатофазний мостовий випрямляч
- •1.4.8 Основні характеристики випрямлячів
- •1.4.9 Характеристика навантаження випрямляча
- •1.5 Робота випрямляча на навантаження з ємнісною реакцією
- •1.6 Робота випрямляча на індуктивне навантаження
- •1.7 Помножувачі напруги
- •1.7.1 Необхідність множення напруги
- •1.7.2 Пристрій подвоєння напруги
- •1.7.3 Множення напруги у довільне число разів
- •1.7.4 Несиметричний помножувач напруги першого роду
- •1.7.5 Несиметричний помножувач напруги другого роду
- •1.8 Запитання тестового контролю
- •2 Згладжуючі фільтри
- •2.1 Загальні відомості про фільтри
- •2.2 Ємнісний фільтр
- •2.3 Індуктивний фільтр
- •2.4 Г-подібні індуктивно-ємнісний (lc) та активно-ємнісний (rc) фільтри
- •2.5 П-подібний фільтр
- •2.6 Загальні положення про фільтри
- •2.7 Транзисторні фільтри
- •2.8 Запитання тестового контролю
- •3 Безперервні стабілізатори постійної напруги та струму
- •3.1 Класифікація стабілізаторів
- •3.2 Основні характеристики стабілізаторів
- •3.3 Використання стабілітронів у стабілізаторах напруги
- •3.4 Однокаскадний стабілізатор на стабілітроні
- •3.4.1 Схема стабілізатора
- •3.4.2 Рівняння для вихідної напруги
- •3.4.3 Вихідний опір стабілізатора
- •3.4.4 Коефіцієнт стабілізації
- •3.4.5 Вплив нестабільності ерс стабілітрона на вихідну напругу псн
- •3.5 Графічний розрахунок режиму роботи псн
- •3.6 Стабілізатори напруги на стабілітронах
- •3.6.1 Параметричний каскадний стабілізатор напруги
- •3.6.2 Температурна компенсація у псн
- •3.6.3 Мостова схема псн
- •3.6.4 Параметричні стабілізатори з активними елементами
- •3.6.5 Порівняння схем псн
- •3.6.6 Порядок розрахунку псн
- •3.7 Компенсаційні стабілізатори постійної напруги з неперервним регулюванням
- •3.7.1 Загальні відомості про компенсаційні стабілізатори
- •3.7.2 Послідовний та паралельний компенсаційні стабілізатори
- •3.8 Однотранзисторний послідовний стабілізатор
- •3.9 Ксн з підсилювачем у колі зворотного зв'язку
- •3.10 Складені транзистори в компенсаційних стабілізаторах
- •3.11 Прямі зв’язки в компенсаційних стабілізаторах
- •3.12 Елементи захисту у стабілізаторах
- •3.13 Низьковольтні компенсаційні стабілізатори
- •3.14 Інтегральні стабілізатори напруги
- •3.14.1 Причини використання мікросхем у стабілізаторах
- •3.14.2 Інтегральна мікросхема к142ен1
- •3.14.3 Інтегральні мікросхеми 142ен3 – 142ен9
- •3.14.4 Увімкнення імс стабілізаторів фіксованої напруги
- •3.15 Загальні зауваження щодо компенсаційних стабілізаторів
- •3.16 Імс безпосереднього перетворення змінної напруги у постійну
- •3.17 Напрямки розвитку компенсаційних стабілізаторів напруги
- •3.18 Запитання тестового контролю
- •4 Імпульсні стабілізатори постійної напруги
- •4.1 Принцип роботи імпульсного стабілізатора
- •4.2 Системи імпульсної стабілізації напруги
- •4.3 Функціональні схеми імпульсних стабілізаторів постійної напруги
- •4.3.1 Імпульсний послідовний стабілізатор
- •4.3.2 Імпульсний інвертуючий стабілізатор
- •4.3.3 Імпульсний паралельний стабілізатор
- •4.4 Особливості силових ланцюгів імпульсних стабілізаторів
- •4.5 Структурна схема ланцюга керування стабілізатора з шім
- •4.6 Імпульсний стабілізатор з шім
- •4.7 Релейний імпульсний стабілізатор
- •4.8 Стабілізатор з шім на імс к142еп1
- •4.9 Запитання тестового контролю
- •5 Інвертори та перетворювачі
- •5.1 Терміни, визначення, класифікація
- •5.2 Двотактні перетворювачі
- •5.2.1 Двотактний перетворювач напруги (дпн) з середньою точкою
- •5.2.2 Мостовий та напівмостовий дпн
- •5.2.3 Аналіз двотактних перетворювачів напруги
- •5.3 Двотактний перетворювач напруги з самозбудженням
- •5.4 Однотактні перетворювачі напруги
- •5.4.1 Однотактний перетворювач напруги з прямим увімкненням діода випрямлення (опнп)
- •5.4.2 Однотактний перетворювач напруги зі зворотним увімкненням діода випрямлення (опнз)
- •5.5 Порівняльний аналіз двотактних та однотактних перетворювачів
- •5.6 Резонансні перетворювачі
- •5.6.1 Причини розробки резонансних перетворювачів
- •5.6.2 Мостовий резонансний перетворювач з послідовним контуром
- •5.6.3 Резонансні перетворювачі з односпрямованою передачею енергії
- •5.6.4 Резонансний однотактний перетворювач напруги з прямим увімкненням діода
- •5.7 Перетворювачі з п’єзотрансформаторами
- •5.8 Високочастотні перетворювачі модульної структури
- •5.9 Функціональна схема імпульсного джерела електроживлення
- •5.10 Безперебійні джерела живлення
- •5.11 Узагальнення правил побудови джерел вторинного живлення
- •5.12 Запитання тестового контролю
- •6 Трансформатори і дроселі
- •6.1 Основні відомості
- •6.2 Гістерезис у магнітних ланцюгах
- •6.3 Втрати в магнітопроводах
- •6.4 Дроселі з однорідним феромагнітним осердям
- •6.5 Дроселі з неоднорідними магнітопроводами
- •6.6 Трансформатори
- •6.6.1 Будова трансформаторів
- •6.6.2 Робота трансформатора
- •6.6.3 Проектування трансформатора
- •6.7 Автотрансформатори
- •6.8 Магнітні підсилювачі
- •6.9 Параметричні стабілізатори змінної напруги
- •6.9.1 Дросельний стабілізатор напруги
- •6.9.2 Параметричний стабілізатор з коливальним контуром
- •7 Електромеханічні пристрої та джерела первинної електроенергії
- •7.1 Електромеханічні пристрої
- •7.2 Первинні джерела електричної енергії
- •Глосарій
- •Перелік посилань
1 Однофазні та багатофазні випрямлячі
1.1 Функціональна схема пристрою випрямлення
Радіотехнічні пристрої у більшості випадків живлять постійним струмом. Первинні промислові джерела живлення виробляють змінну напругу стандартного значення та частоти. Перетворення змінної напруги у постійну виконують за допомогою пристроїв вторинного живлення – випрямлячів. Випрямляч – це електротехнічний пристрій, призначений для перетворення одно- або багатофазної змінної напруги у постійну напругу з потрібними значеннями струму та коефіцієнта пульсацій.
Структурна схема випрямляча наведена на рисунку 1.1. До його складу входять трансформатор Тр, діодна група (безпосередньо випрямляч В) та фільтр для згладжування пульсацій (згладжуючий фільтр) Ф [4]. Випрямляч може бути керованим, для цього до його складу уводять пристрій керування ПК.
Рисунок 1.1 – Схема випрямляча
Призначення окремих елементів випрямляча.
Трансформатор необхідний для зміни величини напруги вхідного джерела та для гальванічної розв’язки мережі з навантаженням.
Випрямляюча діодна група являє собою пристрій, який перетворює змінний струм у пульсуючий. Він може виконувати також функції регулятора напруги.
Згладжуючий фільтр – це пристрій, який призначений для зменшення амплітуди змінної складової у випрямленій напрузі, іншими словами – пристрій для згладжування пульсацій випрямленої напруги.
Випрямлячі класифікують: за типом вентилів (керовані, некеровані), вентилі можуть бути напівпровідниковими, електронними, іонними; за величиною напруги та потужності; за схемою випрямлення – однофазні та багатофазні, однотактні та двотактні, з множенням напруги.
1.2 Діоди випрямлення та їх характеристики
1.2.1 Статична характеристика діода
В джерелах живлення радіотехнічних пристроїв частіше використовують германієві та кремнієві напівпровідникові діоди.
Основні
їх параметри:
постійний прямий та зворотній струми;
імпульсне значення прямого струму;
постійне падіння напруги на діоді при
протіканні струму в прямому напрямі;
зворотна напруга; порогова напруга
–
значення постійної напруги в точці
перетину прямої, що апроксимує
вольт-амперну характеристику діода
(ВАХ) при великих струмах, з віссю напруги
(рисунок 1.2) [6].
Діоди характеризують динамічним та диференційним опорами, які визначаються виразами:
, (1.1)
, (1.2)
де
та
– малі прирости напруги та струму.
Рисунок 1.2 – Вольт-амперна характеристика діода
Для спрощення аналізів процесів випрямлення реальну вольт-амперну характеристику 1 діода (рисунок 1.3), подають лінійною ломаною ідеального вентиля (2, пунктир), ідеального вентиля з втратами (3), чи ідеального вентиля з втратами та порогом (4) [3].
Рисунок 1.3 – Можливі апроксимації вольт-амперної характеристики діода
Порогова напруга для германієвих і кремнієвих діодів складає відповідно 0,15-0,2 та 0,4-0,8 В.
1.2.2 Інерційність діодів
Крім статичних характеристик діод характеризується параметрами, які визначають його інерційні властивості при перемиканні діода з режиму прямого струму на зворотну напругу (рисунок 1.4) [6].
Рисунок 1.4 – Часова характеристика переключення діода
Після
моменту часу
,
коли відбувається зміна полярності
вхідної напруги, діод через інерційність
носіїв заряду залишається відкритим
до моментуt2,
і через нього в зворотному напрямі
протікає струм.