
- •Конспект лекцій
- •Конспект лекцій
- •0 Вступ
- •1 Однофазні та багатофазні випрямлячі
- •1.1 Функціональна схема пристрою випрямлення
- •1.2 Діоди випрямлення та їх характеристики
- •1.2.1 Статична характеристика діода
- •1.2.2 Інерційність діодів
- •1.2.3 Енергетичні характеристики діодів
- •1.2.4 Паралельне та послідовне з'єднання діодів
- •1.3 Схеми випрямлення та їх класифікація
- •1.4 Аналіз схем випрямляння при активному навантаженні
- •1.4.1 Однофазний однопівперіодний випрямляч
- •1.4.2 Однофазний двопівперіодний випрямляч
- •1.4.3 Багатофазний однопівперіодний випрямляч
- •1.4.4 Пульсації напруги випрямлячів
- •1.4.5 Мостовий однофазний випрямляч
- •1.4.6 Мостовий випрямляч для отримання різнополярних напруг
- •1.4.7 Багатофазний мостовий випрямляч
- •1.4.8 Основні характеристики випрямлячів
- •1.4.9 Характеристика навантаження випрямляча
- •1.5 Робота випрямляча на навантаження з ємнісною реакцією
- •1.6 Робота випрямляча на індуктивне навантаження
- •1.7 Помножувачі напруги
- •1.7.1 Необхідність множення напруги
- •1.7.2 Пристрій подвоєння напруги
- •1.7.3 Множення напруги у довільне число разів
- •1.7.4 Несиметричний помножувач напруги першого роду
- •1.7.5 Несиметричний помножувач напруги другого роду
- •1.8 Запитання тестового контролю
- •2 Згладжуючі фільтри
- •2.1 Загальні відомості про фільтри
- •2.2 Ємнісний фільтр
- •2.3 Індуктивний фільтр
- •2.4 Г-подібні індуктивно-ємнісний (lc) та активно-ємнісний (rc) фільтри
- •2.5 П-подібний фільтр
- •2.6 Загальні положення про фільтри
- •2.7 Транзисторні фільтри
- •2.8 Запитання тестового контролю
- •3 Безперервні стабілізатори постійної напруги та струму
- •3.1 Класифікація стабілізаторів
- •3.2 Основні характеристики стабілізаторів
- •3.3 Використання стабілітронів у стабілізаторах напруги
- •3.4 Однокаскадний стабілізатор на стабілітроні
- •3.4.1 Схема стабілізатора
- •3.4.2 Рівняння для вихідної напруги
- •3.4.3 Вихідний опір стабілізатора
- •3.4.4 Коефіцієнт стабілізації
- •3.4.5 Вплив нестабільності ерс стабілітрона на вихідну напругу псн
- •3.5 Графічний розрахунок режиму роботи псн
- •3.6 Стабілізатори напруги на стабілітронах
- •3.6.1 Параметричний каскадний стабілізатор напруги
- •3.6.2 Температурна компенсація у псн
- •3.6.3 Мостова схема псн
- •3.6.4 Параметричні стабілізатори з активними елементами
- •3.6.5 Порівняння схем псн
- •3.6.6 Порядок розрахунку псн
- •3.7 Компенсаційні стабілізатори постійної напруги з неперервним регулюванням
- •3.7.1 Загальні відомості про компенсаційні стабілізатори
- •3.7.2 Послідовний та паралельний компенсаційні стабілізатори
- •3.8 Однотранзисторний послідовний стабілізатор
- •3.9 Ксн з підсилювачем у колі зворотного зв'язку
- •3.10 Складені транзистори в компенсаційних стабілізаторах
- •3.11 Прямі зв’язки в компенсаційних стабілізаторах
- •3.12 Елементи захисту у стабілізаторах
- •3.13 Низьковольтні компенсаційні стабілізатори
- •3.14 Інтегральні стабілізатори напруги
- •3.14.1 Причини використання мікросхем у стабілізаторах
- •3.14.2 Інтегральна мікросхема к142ен1
- •3.14.3 Інтегральні мікросхеми 142ен3 – 142ен9
- •3.14.4 Увімкнення імс стабілізаторів фіксованої напруги
- •3.15 Загальні зауваження щодо компенсаційних стабілізаторів
- •3.16 Імс безпосереднього перетворення змінної напруги у постійну
- •3.17 Напрямки розвитку компенсаційних стабілізаторів напруги
- •3.18 Запитання тестового контролю
- •4 Імпульсні стабілізатори постійної напруги
- •4.1 Принцип роботи імпульсного стабілізатора
- •4.2 Системи імпульсної стабілізації напруги
- •4.3 Функціональні схеми імпульсних стабілізаторів постійної напруги
- •4.3.1 Імпульсний послідовний стабілізатор
- •4.3.2 Імпульсний інвертуючий стабілізатор
- •4.3.3 Імпульсний паралельний стабілізатор
- •4.4 Особливості силових ланцюгів імпульсних стабілізаторів
- •4.5 Структурна схема ланцюга керування стабілізатора з шім
- •4.6 Імпульсний стабілізатор з шім
- •4.7 Релейний імпульсний стабілізатор
- •4.8 Стабілізатор з шім на імс к142еп1
- •4.9 Запитання тестового контролю
- •5 Інвертори та перетворювачі
- •5.1 Терміни, визначення, класифікація
- •5.2 Двотактні перетворювачі
- •5.2.1 Двотактний перетворювач напруги (дпн) з середньою точкою
- •5.2.2 Мостовий та напівмостовий дпн
- •5.2.3 Аналіз двотактних перетворювачів напруги
- •5.3 Двотактний перетворювач напруги з самозбудженням
- •5.4 Однотактні перетворювачі напруги
- •5.4.1 Однотактний перетворювач напруги з прямим увімкненням діода випрямлення (опнп)
- •5.4.2 Однотактний перетворювач напруги зі зворотним увімкненням діода випрямлення (опнз)
- •5.5 Порівняльний аналіз двотактних та однотактних перетворювачів
- •5.6 Резонансні перетворювачі
- •5.6.1 Причини розробки резонансних перетворювачів
- •5.6.2 Мостовий резонансний перетворювач з послідовним контуром
- •5.6.3 Резонансні перетворювачі з односпрямованою передачею енергії
- •5.6.4 Резонансний однотактний перетворювач напруги з прямим увімкненням діода
- •5.7 Перетворювачі з п’єзотрансформаторами
- •5.8 Високочастотні перетворювачі модульної структури
- •5.9 Функціональна схема імпульсного джерела електроживлення
- •5.10 Безперебійні джерела живлення
- •5.11 Узагальнення правил побудови джерел вторинного живлення
- •5.12 Запитання тестового контролю
- •6 Трансформатори і дроселі
- •6.1 Основні відомості
- •6.2 Гістерезис у магнітних ланцюгах
- •6.3 Втрати в магнітопроводах
- •6.4 Дроселі з однорідним феромагнітним осердям
- •6.5 Дроселі з неоднорідними магнітопроводами
- •6.6 Трансформатори
- •6.6.1 Будова трансформаторів
- •6.6.2 Робота трансформатора
- •6.6.3 Проектування трансформатора
- •6.7 Автотрансформатори
- •6.8 Магнітні підсилювачі
- •6.9 Параметричні стабілізатори змінної напруги
- •6.9.1 Дросельний стабілізатор напруги
- •6.9.2 Параметричний стабілізатор з коливальним контуром
- •7 Електромеханічні пристрої та джерела первинної електроенергії
- •7.1 Електромеханічні пристрої
- •7.2 Первинні джерела електричної енергії
- •Глосарій
- •Перелік посилань
2.8 Запитання тестового контролю
1. Згладжуючий фільтр електротехнічного пристрою це:
фільтр верхніх частот; пристрій для виділення складової спектра з нульовою частотою; пристрій для корегування АЧХ ланки трансформатор-випрямляч; смуговий фільтр; пристрій для виділення спектральних складових з частотами mf, де – m - число фаз випрямлення, f – частота напруги мережі.
2. Відмітьте невірне твердження щодо властивостей активного фільтра та його складових?
дуже малий вихідний опір; великий динамічний опір ланцюга колектор-емітер; малий статичний опір ланцюга колектор-емітер; наявність ланцюгів з постійною часу, що значно перевищує період пульсацій; мала залежність струму колектора транзистора від напруги на переході колектор-емітер.
3. В якій ситуації доцільно використовувати випрямляч з дволанковим RC-фільтром?
велика потужність навантаження і великий допустимий коефіцієнт пульсацій; дуже малий допустимий коефіцієнт пульсацій і великий струм навантаження; дуже малий струм навантаження і велика напруга випрямлення; величина струму в одиниці ампер при напрузі 5 В.
4. Після якої з схем випрямлення при рівних вимогах до вихідних пульсацій потрібно використати фільтр з максимальним коефіцієнтом згладжування?
однофазної мостової; трифазної мостової; трифазної однопівперіодної; двопівперіодної однофазної; однопівперіодної однофазної.
5. Для згладжування пульсацій доцільно використовувати П-подібний RC-фільтр при:
великій вихідній потужності; великому вихідному струмі; великих напругах і струмі в одинці міліампер; живленні процесорів ЕОМ з напругою, меншою 5 В;- живленні малопотужних двигунів та реле.
6. На виході випрямляча для якісного згладжування пульсацій використовують фільтр такого типу:
режекторний; верхніх частот; смуговий; нижніх частот; послідовне з'єднання фільтрів верхніх та нижніх частот.
3 Безперервні стабілізатори постійної напруги та струму
3.1 Класифікація стабілізаторів
Нормальна робота радіотехнічних пристроїв можлива лише при забезпеченні з необхідною точністю постійності напруги живлення. Наприклад, радіопередавальні станції та зв’язкові радіостанції допускають нестабільність напруги живлення не гірше 2...3 %. Деякі пристрої високого класу точності допускають нестабільність напруги не більше 0,0001 % [1,..., 6].
Низькою стабільністю вважають таку, при якій напруга (струм) змінюється більше, ніж на 5 %, середньою – 1...5 %, високою – 0,1...1 %, прецизійною - менше 0,1 % [4].
Основні причини нестабільності: коливання вхідної напруги, зміна струму навантаження, зміна температури, вологості, частоти струму мережі живлення.
Стабілізатором напруги (струму) називають пристрій, що автоматично і з необхідною точністю підтримує на навантаженні заданий параметр при зміні дестабілізуючих чинників у визначеному діапазоні.
Стабілізатори підрозділяють на параметричні та компенсаційні.
Параметричні стабілізатори (ПСН) – це такі стабілізатори напруги або струму, принцип дії яких базується на використанні пасивних елементів з нелінійними вольт-амперними характеристиками (ВАХ).
Для стабілізації напруги використовують елементи з характеристиками, які наведені на рисунку 3.1,а. Значні зростання струму такого елемента, починаючи з деякого значення, призводять до малих змін напруги на ньому. Таку ВАХ мають, наприклад, стабілітрони, котушки індуктивності з насиченими осердями.
Рисунок 3.1 – Вольт амперні характеристики:
а – стабілізатора напруги; б – стабілізатора струму
Елементи з характеристиками, наведеними на рисунку 3.1,б (баретери, термістори, лампи накалювання), використовують для стабілізації струму.
Компенсаційні стабілізатори напруги або струму (КСН) – це стабілізатори, що являють собою замкнуті системи автоматичного регулювання (САР) з від’ємним зворотнім зв’язком (ЗЗ), ефект стабілізації у яких відбувається внаслідок змін характеристик регулюючого елемента (РЕ) [3, 4, 7]. Структурна схема компенсаційного стабілізатора наведена на рисунку 3.2.
У компенсаційних стабілізаторах напруги сигнал ЗЗ є функцією вихідної напруги, а у стабілізаторах струму – вихідного струму.
Залежно від типу регулюючого елемента стабілізатори поділяють на лампові, транзисторні, тиристорні, дросельні, комбіновані.
Рисунок 3.2 – Структурна схема компенсаційного стабілізатора
За способом увімкнення РЕ відносно навантаження стабілізатори напруги ділять на послідовні та паралельні. За режимом роботи регулюючого елемента РЕ їх ділять на стабілізатори з неперервним регулюванням та імпульсні. Останні класифікують за принципом керування: широтно-імпульсні, частотно-імпульсні, релейні.