Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кто провтыкал физику, тот читает).doc
Скачиваний:
113
Добавлен:
07.02.2016
Размер:
2.67 Mб
Скачать

7.3 Теорема Остроградського-Гаусса та її застосування до розрахунку електростатичного поля заряджених тіл

Для спрощення розрахунку полів симетричних заряджених тіл застосовується теорема Остроградського – Гауса: потік вектора електростатичної індукції через будь-яку замкнуту поверхню дорівнює алгебраїчній сумі зарядів, охоплених цією поверхнею. . (7.14)

ПотокомdФ вектора через площадку dS називається добуток векторана величину площадки dS і на косинус кута α між векторомі нормальним до площадки dS одиничним вектором(рис.7.7).

. (7.15)

ПлощадкуdS вважають вектором, який за напрямком співпадає з вектором . Якщо заряд, наприклад,q1 знаходиться за межами замкнутої поверхні (рис.7.8), потік дорівнює нулю. Дійсно, скільки силових ліній входить в об’єм, обмежений поверхнею, стільки ж і виходить. Силові ж лінії від зарядуq2, який знаходиться всередині поверхні, тільки виходять з неї.

Розглянемо приклади застосування цієї теореми.

Приклад 1. Напруженість поля точкового заряду.

Поверхню S вибираємо у вигляді сфери радіусом r, в центрі якої знаходиться заряд q (рис.7.9).

По теоремі Остроградського-Гауса маємо

Для різних точок сфери вектор D однаковий за величиною, так як всі вони однаково розміщені по відношенню до заряду q. Тому його винесли за знак інтегралу. А дає площу поверхні сфери. Одержуємо

і . (7.16)

Приклад 2. Поле зарядженої по поверхні до заряду q металевої кулі радіусом R (рис.7.10).

Для r < R ТомуD = 0 і Е = 0. Поле всередині провідників відсутнє. При r > R аналогічно прикладу 2,

і . (7.17)

Графік залежності індукціїD від радіуса r показана на рис.7.12. На поверхні кулі індукція зазнає стрибкоподібної зміни на величину σ поверхневої густини вільних зарядів.

Приклад 3. Поле рівномірно зарядженої по об’єму до заряду q кулі радіусом R (рис.7.13).

Для r>R аналогічно прикладу 2 і 3

і . (7.18)

Об’ємна густина заряду. Вирази (7.18) приймуть вид

(7.19)

При r<R одержуємо .

, (7.20)

або через густину заряду і(7.21)

Графік залежності індукціїD від радіуса r показана на рис.7.14. При r = R вирази (7.18) і (7.20) дають однакову величину D. Отже на поверхні кулі вектор індукції розриву не зазнає.

Висновок. Із прикладів 1-3 видно, що поле зарядженої кулі за її межами таке ж, як і поле точкового заряду, якщо заряд кулі зосередити в її центрі (див. вирази (7.16)-(7.18).

Приклад 4. Поле нескінченної зарядженої осі (циліндра) з лінійною густиною заряду τ (рис.7.15).

ПоверхнюS виберемо у вигляді циліндра, вісь якого співпадає з зарядженою віссю. Для основ цього циліндра кут між і дорівнює 90о. Тому потік через основи дорівнює нулю. Для елементів бічної поверхні цей кут дорівнює 0о. Отже можна записати Одержуємо(7.22).

Одержаний результат співпадає з (7.12).

Приклад 5. Поле нескінченної зарядженої площини з поверхневою густиною заряду σ (рис.7.16).

Поверхню S вибираємо у вигляді циліндра, основи якого радіусом r паралельні площині. Для бічної поверхні кут між і дорівнює 90о. Тому потік через бічну поверхню дорівнює нулю. Для елементів основ цей кут дорівнює 0о. Отже можна записати

Одержуємо (7.23).

Одержали такий же результат, як і в (7.13).

Приклад 6. Поле нескінченних паралельних різнойменно заряджених площин до густини зарядів +σ і -σ.

По принципу суперпозиції. Якщо густини зарядів однакові, то за межами площин(рис.7.17), а між площинами

(7.24)