Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кто провтыкал физику, тот читает).doc
Скачиваний:
113
Добавлен:
07.02.2016
Размер:
2.67 Mб
Скачать

4.12 Аналогія величин і рівнянь поступального і обертального руху. Кінетична енергія обертання тіла

Поступальний рух

Обертальний рух

S - шлях

φ – кут повороту

aτ –дотичне прискорення

ε – кутове прискорення

m - маса

J – момент інерції

F - сила

М – момент

P=mV - імпульс

L=Jω – момент імпульсу

- робота

- робота

- потужність

- потужність

- 2-й з-н Ньютона

- осн. рівн-ня дин. оберт. руху.

- кінетична енергія поступального руху

- кінетична енергія обертання тіла

Доведемо останню формулу. Кінетична енергія ∆Екі елементу тіла ∆mi дорівнює . Ми врахували зв’язок лінійної і кутової швидкостей. Кінетичну енергію обертання всього тіла знайдемо як суму кінетичних енергій усіх його елементів, врахувавши (4.40), тобто. (4.43)

Якщо тіло не тільки обертається, а ще і його центр маси рухається поступально з швидкістю V, наприклад, котиться колесо, то кінетична енергія дорівнює сумі поступальної і обертальної складових

. (4.44)

4.13 Розрахунок моментів інерції деяких тіл. Теорема Штейнера

Момент інерції тіла залежить не тільки від маси тіла, а і від її розподілу відносно осі обертання. Тому одне і теж тіло має різні моменти інерції відносно різних осей обертання. Розглянемо ряд прикладів розрахунку моменту інерції, користуючись його означенням (4.40).

a) момент інерції матеріальної точки . Задана маса m і радіус обертання R (рис.4.16). ЗнайтиJ.

Згідно з означенням (4.40) моменту інерції .

Внашому випадкуr = R = const.

Тому . (4.45)

б) момент інерції обруча (труби) відносно осі, яка проходить через його центр і перпендикулярна площині обруча. Задана маса m і радіус обручаR (рис.4.17). Знайти J.

. r = R = const.

Тому. (4.46)

в) Момент інерції диска (циліндра) відносно осі, яка співпадає з віссю циліндра. Задана маса диска m і його радіус R (рис.4.18). Знайти J.

. Виберемо елемент dm у вигляді труби радіусом r з товщиною стінки dr і довжиною b, яка дорівнює товщині диска (висоті циліндра). Маса цієї труби . Густина. Тому маємо

.

Таким чином, момент інерції обруча (циліндра) . (4.47)

Видно, що порівнюючи з обручем (трубою) маса диска (циліндра) розподілена в цілому ближче до осі обертання. Тому і одержаний момент інерції менший.

г) момент інерції довгого тонкого стержня відносно осі, яка перпендикулярна до нього і проходить через середину стержня. Задані маса m стержня і його довжина (рис.4.19). Знайти J.

Виберемо елемент dm у вигляді частини стержня довжиною dr, який віддалений від осі на відстань r.

Його маса dm порційна довжині і дорівнює . Момент інерції стержня

. (4.48)

д)момент інерції кулі відносно діаметра. Задана маса m і радіус R. Момент інерції кулі . (4.49)

Для розрахунку моментів інерції тіл відносно осей, які не проходять через центр маси тіл (рис.4.20), застосовуєтьсятеорема Штейнера: момент інерції J тіла відносно будь-якої осі дорівнює сумі моменту інерції Jo цього тіла відносно осі, яка проходить через центр маси О тіла та паралельна заданій, і добуткові маси m тіла на квадрат відстані d між цими осями

. (4.50)

Впевнимося у справедливості цієї теореми на прикладі розрахунку моменту інерції довгого стержня відносно осі, яка перпендикулярна до стержня і проходить через його край (рис.4.21). Безпосереднє інтегрування, як і у прикладі 4) дає

.

По теоремі Штейнера, враховуючи (4.48), одержуємо

(4.51)

такий же результат, як і безпосереднім інтегруванням.