Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

material1 / different / Chung-Yu Wu - Analog Circuit Design

.pdf
Скачиваний:
51
Добавлен:
05.06.2015
Размер:
29.49 Mб
Скачать

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14-70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHUNG-YU WU

 

jωT

 

 

 

 

jωT

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

H(e

)=Hi(e

)

 

 

 

 

 

 

 

 

 

 

 

 

1 + ( 1

)(1 +C / 2C ) j(C / C ) / 2A tan(ωT 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

AO

1

2

 

1 2

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hi(z)=

 

(C1 / C2 )

 

 

 

 

 

 

 

F(ω)

 

 

 

 

 

 

 

z 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F(ω)=

 

 

 

1

 

 

 

 

 

 

m(ω)=

1

(1+

 

C1

) θ(ω)=

 

 

C1 / C2

 

 

1 m(ω) + jθ(ω)

 

 

 

 

 

AO

 

 

2C2

 

2A

tan(ωT / 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1 / C2

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

ωT

 

 

 

F(ω) =

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1+m

 

 

 

relative magnitude error

(1 m)2 +θ 2

 

1

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ<<1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F(ω)=-tan-1

θ

 

tan-1θ

θ

 

relative phase error

 

 

 

 

 

 

 

 

 

 

1 m

 

 

 

 

 

 

 

 

 

m<<1

 

 

 

 

 

 

 

 

θ<<1

 

 

 

 

 

 

 

 

 

 

 

 

ωT<<1 , Ao >1000 , C1/C2 normal value.

 

AoωT>>1

 

 

 

 

 

Ao>1000=>0.1%

 

ω>>

1

 

=

 

 

fs

 

Ao>100=>1%

 

 

 

A

 

 

A T

 

 

 

 

 

 

 

 

o

 

 

 

 

 

o

 

 

 

 

=> m and θ are very small.

<0.1%

 

 

But for ω<2/AoT , θ is large.

 

 

 

 

6. Finite Bandwidth of the OP AMP.

 

 

 

 

A(s)=

1

 

 

 

 

 

 

single-pole response

 

 

1/ A + S

/ω

 

 

 

 

 

 

o

 

 

 

o

 

 

 

 

Similarly

 

 

 

 

 

 

 

 

 

 

 

 

m(ω)=-e

-k1

[1-KcosωT]

k=

C2

 

 

 

 

 

C +C

2

 

 

 

 

 

 

 

 

 

 

 

1

 

 

θ(ω)= e-k1KsinωT

k1 K woT/2

If ωoT/2=πωo/ωc >>1 => m→0, θ→0.

**ωo 5ωc is adequate.

*The unity-gain bandwidth ωo of the OP AMP should be (at least) five times as large as the clock frequency ωc.

14-71 CHUNG-YU WU

ωo vs ωc:

(1) Given ωo, ωc should be chosen low enough so that the OP AMPs have enough time to settle.

But ωc should not be too low, or the noise aliasing effect becomes serious the antialiasing and smoothing filters must be too selective and too complex.

(2)Given ωc, ωo should be just high enough to assure that the stage can settle within each clock phase. Any higher value worsens unnecessarily the noise aliasing effect, and raises the dc power and chip area requirements of the op-amps.

(3)Ao=1000 (60dB), fo=10MHz, fp1=10KHz

choose fc=2MHz, and f<40 KHz Typically f/fc 48 i.e. ωoT 14

7.Finite Slew Rate of the OP AMP

*The output voltage of the OP AMP must be settled down with the clock active duration.

tslew + t settle<T2

*May cause nonlinear distortion.

8.Nonzero OP AMP Output Resistance

2Ro (

C1C2

 

+CL ) T1 <

1

TΦ2=1

C +C

2

7

 

1

 

 

 

C2: feedback cap ; C1:input cap; CL: load cap.

9. Overall considerations:

For an integrator settling error of 0.1% or less, we must have

Ao 5000

ωo/ωc 4 T/RonC1 40

10.Noise Generated in SC Circuits

(1)Clock feedthrough noise

(2)Noise coupled directly or capacitive from the power, clock, ground lines, and from the substrate.

14-72 CHUNG-YU WU

(3) Thermal and flicker ( 1 f ) noise generated in the switches and op-amps.

Thermal and flicker ( 1 f ) noise:

* Internal sampling and holding=>If 1

f

noise has no

 

 

aliasing=>It can be eliminated.

 

 

*Thermal noise will be sampled and held with the OP AMP as a frequency limiting element.=> ωo>>ωc is not suitable.

*The circuit noise ↓ if the circuit cap. ↑

15-1 CHUNG-YU WU

CH 15. Continuous-Time Filters in CMOS

§15-1 Categories of continuous-time filter ICs

 

 

 

 

 

Amplifier Types

 

Continuous-Time Filter Types

 

 

 

 

 

Voltage OP AMP AV

Ο

(Voltage-mode) Active RC filters

 

Current OP AMP AI

(Current-mode) Active RC filters

 

Finite-gain voltage amp

(Voltage-mode) Active RC filters

 

Finite-gain current amp.

(Current-mode) Active RC filters

 

Infinite-gain Operational Transconductance

 

×

 

Amp. (OTA) Gm

 

 

 

 

 

Finite-gain OTA or gm amplifier

Ο

(Voltage-mode) Gm-C filters

 

Infinite-gain Operational Transimpedance

 

×

 

Amp. Rm

 

 

 

 

 

Finite-gain Transimpedance Amp. or Rm

(Current-mode) Rm-C filters

 

amplifier

 

 

 

Mixed Gm and Rm Amplifiers

 

?

 

Mixed AV, AI, Gm, and Rm Amplifiers

 

?

 

RF amplifier

Integrated LC filters

 

 

 

 

Ο: well developed

: less developed but with great potential

: much less developed × : not explored

? : to be developed with potential

Common characteristics of continuous-time filters: 1. Not parasitic free

=>Greater tolerance in performance. 2. No switches or clocks

=>Lower noise (clock-induced) or simpler circuit.

3. Need tuning to accommodate the process variations on filter characteristics if high accuracy is required. =>Extra overhead and higher cost.

=>Might not be needed if process-independent design is used and reasonable tolerance is allowed.

15-2 CHUNG-YU WU

4.Could achieve higher-frequency operation in the VHF or UHF range if finite-gain amplifiers are used.

5.Could achieve GHz operation if deep submicron CMOS is used.

§15-2 Gm-C or OTA-C (Operational-Transconductance-Amplifier-C)

Filters

§15-2.1 Transconductor or OTA characteristics

Ideal characteristics:

gm=hIABC or h'VABC Io=gm(V+-V-)

Ri, Ro=0 h(h') is a constant.

Gm amp or OTA symbol

V+

Io

gm

 

V-

 

IABC or VABC

Io

V+

 

Nonideal characteristics:

gm is not linearly proportional

to IABC or VABC.

Ri and Ro are finite.

R

i

→ ∞

gm(V+ - V-)

 

 

 

Ro=0

 

V-

 

 

 

 

 

 

 

 

 

ideal equivalent circuit

Io

V+

 

 

 

 

 

 

 

Ri

 

 

Ro

 

 

 

gm(V+ - V-)

 

V-

 

 

 

 

 

 

 

§15-2.2 Basic OTA building blocks

Ref.: IEEE Circuits and Device Magazine, pp.20-32, March 1985. 1. Voltage amplifiers Gm or op amp + resistors.

(a) Basic inverting

(b) Basic noninverting

15-3 CHUNG-YU WU

(c) Feedback amplifier

(d) Noninverting feedback amplifier

(e) Buffered amplifier

(f) Buffered VCVC feedback

(g) All OTA amplifiers

15-4 CHUNG-YU WU

2.Controlled impedance elements

1

 

2

(a) Single-ended voltage

(b) Floating VVR

variable resistor (VVR)

 

(c) Scaled VVR

(d) Voltage variable impedance inverter

(e) Voltage variable floating impedance

(f) Impedance multiplier

15-5 YU WU

(f) Super inductor

(f)FDNR

(d)Variable Impedance Inverter (VIC) or Gyrator

*ZL is a capacitor=> Zin is a inductor=>active inductor.

*Can be used in voltage-controlled oscillator (VCO)

(h) FDNR (Frequency Dependent Negative Resistance)

S=jω

Zin(jω)=

R

 

 

 

ω2

* Gyrator +super inductor.

3. Integrators

Gm or OTA + R or C

(a) Simple

(b) Lossy

 

15-6

 

CHUNG-YU WU

gm1

Vo/Vi=gm1/(sC+gm2)

gm2

Vo

C

 

(b) Adjustable

§15-2.3 Gm-C or OTA-C filters (first-order)

(a) First-order lowpass voltage-controlled filter, fixed dc gain, pole adjustable

Vi

 

|H|

Vo

gm

 

 

 

H(s)= V

= sc + g

m

gm

 

 

i

 

Vo

1

 

 

 

 

 

 

 

 

 

 

g

 

 

 

 

 

m

 

 

 

 

gm/C

ω

 

 

(b) Lowpass, fixed pole, adjustable dc gain

Vi

gm

|H|

H(s)=Vo =

 

V

Vo

i

 

 

gm

 

ω

 

1/RC

gm

sc + R1

(c ) Highpass, fixed high-frequency gain, adjustable pole

Vi

Vo

gm

|H|

 

H(s)=Vo

=

sc

 

 

 

V

 

sc + g

m

 

 

i

 

 

 

g

 

 

 

 

 

m

 

 

 

 

 

gm/C

ω

 

 

 

 

 

 

 

 

15-7 CHUNG-YU WU

(d) Shelving equalizer, fixed high-frequency gain, fixed pole, adjustable zero

Vi

gm

 

|H|

gmR>1

V

R(sc + g

 

)

 

 

 

 

 

H(S)=

o =

 

m

 

 

 

 

V

sRC +1

 

 

 

 

i

 

 

 

Vo

 

gmR=1

 

 

 

 

 

 

gmR<1

 

 

 

 

 

 

1/RC

ω

 

 

 

(e) Shelving equalizer, fixed high-frequency gain, fixed zero, adjustable pole

Vi

|H|

gmR<1

H(s)=Vo = gm (1

+ sRC)

Vo

gm

 

Vi

sc

+ gm

 

 

gmR=1

gmR>1

1/RC ω

(f) Lowpass filter, adjustable pole and zero

H(s)=Vo

 

 

 

|H|

=

 

C2

 

 

Vi

 

 

 

 

 

 

 

V

 

 

g

m

 

i

 

Vo

 

 

 

 

gm

 

 

 

 

 

 

 

 

 

 

 

C1

gm/(C1+C2)

 

 

 

ω

 

 

 

 

 

sc2 + gm

s(c1 + c2 )gm

(g) Shelving equalizer, independently adjustable pole and zero

 

C

H(s)=Vo

= sC + gm1

 

|H|

 

 

 

 

V

 

V

sC + g

m2

i

Vo

i

 

 

gm1>gm2

 

 

 

gm1

 

 

 

1

gm1=gm2

 

 

gm2

gm1<gm2

 

 

 

 

 

 

 

 

ω

 

 

Соседние файлы в папке different